Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu
Exercises: E. Laude, T. Möllenhoff
Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 02.09.023
Monday, 22.05.2017, 12:15-14:00
Submission deadline: Wednesday, 17.05.2017, Room 02.09.023

Gradient and Subdifferential (12 Points +4 Bonus)

Exercise 1 (4 Points). Let $X \subset \mathbb{R}^{n}$ open and convex and let $f: X \rightarrow \mathbb{R}$ be twice continuously differentiable. Prove the equivalence of the following statements:

- f is convex.
- For all $x \in X$ the Hessian $\nabla^{2} f(x)$ is positive semidefinite $\left(\forall v \in \mathbb{R}^{n}: v^{\top} \nabla^{2} f(x) v \geq\right.$ $0)$.

Hints: You can use that for $x, y \in X$ it holds that f is convex iff

$$
(y-x)^{\top} \nabla f(x) \leq f(y)-f(x) .
$$

Further recall that there are two variants of the Taylor expansion:

$$
f(x+t v)=f(x)+t v^{\top} \nabla f(x)+\frac{t^{2}}{2} v^{\top} \nabla^{2} f(x) v+o\left(t^{2}\right)
$$

with $\lim _{t \rightarrow 0} \frac{o\left(t^{2}\right)}{t^{2}}=0$ and

$$
f(x+v)=f(x)+v^{\top} \nabla f(x)+\frac{1}{2} v^{\top} \nabla^{2} f(x+t v) v
$$

for appropriate $t \in(0,1)$.
Exercise 2 (2 Points). Let $X \subset \mathbb{R}^{n}$ open and convex, $A \in \mathbb{R}^{n \times n}$ positive semidefinite, $b \in \mathbb{R}^{n}, c \in \mathbb{R}$. Show that that the quadratic form $f: X \rightarrow \mathbb{R}$ defined as

$$
f(x):=\frac{1}{2} x^{\top} A x+b^{\top} x+c,
$$

is convex.
Exercise 3 (2 Points). Let \mathbb{E} be an Euclidean space, with norm $\|\cdot\|$. Show that the subdifferential at zero is given by

$$
\partial\|\cdot\|(0)=\left\{y \in \mathbb{E}:\|y\|_{*} \leq 1\right\}
$$

where $\|\cdot\|_{*}$ denotes the dual norm given by

$$
\|y\|_{*}=\sup _{\|x\| \leq 1}\langle y, x\rangle .
$$

Exercise 4 (4 Points). Compute the subdifferential of the following functions:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{1}$.
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{\infty}$.
- $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, f(X)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(X_{i, j}\right)^{2}\right)^{1 / 2}$.
- $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}, f(x)=\delta_{C}(x)$ for a closed convex set $C \subset \mathbb{E}$.

Exercise 5 (4 Points). Consider the nuclear norm $\|\cdot\|_{\text {nuc }}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ given by

$$
\|X\|_{\mathrm{nuc}}=\sum_{i=1}^{n}\left|\sigma_{i}(X)\right|=\|\sigma(X)\|_{1},
$$

where $\sigma_{i}(X) \in \mathbb{R}$ is the i-th singular value of $X \in \mathbb{R}^{n \times n}$. Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$
\partial\|\cdot\|_{\text {nuc }}(X)=\left\{U_{1} V_{1}^{\top}+U_{2} M V_{2}^{\top}: M \in \mathbb{R}^{s \times s},\|M\|_{\text {spec }} \leq 1\right\}
$$

where $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ are given by the singular value decomposition of $X=U \Sigma V^{\top}$, with U_{1} and V_{1} having $n-s$ columns. Furthermore $\|\cdot\|_{\text {spec }}$ denotes the spectral norm, i.e., the largest singular value.

