Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu Exercises: E. Laude, T. Möllenhoff

Summer Semester 2017

Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 3

Room: 02.09.023

Monday, 22.05.2017, 12:15-14:00

Submission deadline: Wednesday, 17.05.2017, Room 02.09.023

Gradient and Subdifferential (12 Points + 4 Bonus)

Exercise 1 (4 Points). Let $X \subset \mathbb{R}^n$ open and convex and let $f: X \to \mathbb{R}$ be twice continuously differentiable. Prove the equivalence of the following statements:

- \bullet f is convex.
- For all $x \in X$ the Hessian $\nabla^2 f(x)$ is positive semidefinite $(\forall v \in \mathbb{R}^n : v^\top \nabla^2 f(x)v \ge 0)$.

Hints: You can use that for $x, y \in X$ it holds that f is convex iff

$$(y-x)^{\top} \nabla f(x) \le f(y) - f(x).$$

Further recall that there are two variants of the Taylor expansion:

$$f(x + tv) = f(x) + tv^{\top} \nabla f(x) + \frac{t^2}{2} v^{\top} \nabla^2 f(x) v + o(t^2)$$

with $\lim_{t\to 0} \frac{o(t^2)}{t^2} = 0$ and

$$f(x+v) = f(x) + v^{\mathsf{T}} \nabla f(x) + \frac{1}{2} v^{\mathsf{T}} \nabla^2 f(x+tv) v$$

for appropriate $t \in (0,1)$.

Exercise 2 (2 Points). Let $X \subset \mathbb{R}^n$ open and convex, $A \in \mathbb{R}^{n \times n}$ positive semidefinite, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. Show that that the quadratic form $f: X \to \mathbb{R}$ defined as

$$f(x) := \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c,$$

is convex.

Exercise 3 (2 Points). Let \mathbb{E} be an Euclidean space, with norm $\|\cdot\|$. Show that the subdifferential at zero is given by

$$\partial \left\| \cdot \right\| (0) = \{ y \in \mathbb{E} : \left\| y \right\|_* \leq 1 \},$$

where $\|\cdot\|_*$ denotes the dual norm given by

$$||y||_* = \sup_{||x|| \le 1} \langle y, x \rangle.$$

Exercise 4 (4 Points). Compute the subdifferential of the following functions:

- $f: \mathbb{R}^n \to \mathbb{R}, f(x) = ||x||_1$.
- $f: \mathbb{R}^n \to \mathbb{R}, f(x) = ||x||_{\infty}$
- $f: \mathbb{R}^{n \times n} \to \mathbb{R}, f(X) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} (X_{i,j})^2 \right)^{1/2}$.
- $f: \mathbb{E} \to \overline{\mathbb{R}}, f(x) = \delta_C(x)$ for a closed convex set $C \subset \mathbb{E}$.

Exercise 5 (4 Points). Consider the nuclear norm $\|\cdot\|_{\text{nuc}}: \mathbb{R}^{n \times n} \to \mathbb{R}$ given by

$$||X||_{\text{nuc}} = \sum_{i=1}^{n} |\sigma_i(X)| = ||\sigma(X)||_1,$$

where $\sigma_i(X) \in \mathbb{R}$ is the i-th singular value of $X \in \mathbb{R}^{n \times n}$. Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$\partial \left\| \cdot \right\|_{\text{nuc}} \left(X \right) = \left\{ U_1 V_1^{\top} + U_2 M V_2^{\top} : M \in \mathbb{R}^{s \times s}, \left\| M \right\|_{\text{spec}} \le 1 \right\},\,$$

where $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ and $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$ are given by the singular value decomposition of $X = U \Sigma V^{\top}$, with U_1 and V_1 having n-s columns. Furthermore $\|\cdot\|_{\text{spec}}$ denotes the spectral norm, i.e., the largest singular value.