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Gradient and Subdifferential (12 Points + 4 Bonus)
Exercise 1 (4 Points). Let X ⊂ Rn open and convex and let f : X → R be twice
continuously differentiable. Prove the equivalence of the following statements:

• f is convex.

• For all x ∈ X the Hessian∇2f(x) is positive semidefinite (∀ v ∈ Rn : v>∇2f(x)v ≥
0).

Hints: You can use that for x, y ∈ X it holds that f is convex iff

(y − x)>∇f(x) ≤ f(y)− f(x).

Further recall that there are two variants of the Taylor expansion:

f(x+ tv) = f(x) + tv>∇f(x) +
t2

2
v>∇2f(x)v + o(t2)

with limt→0
o(t2)
t2

= 0 and

f(x+ v) = f(x) + v>∇f(x) +
1

2
v>∇2f(x+ tv)v

for appropriate t ∈ (0, 1).

Solution. Let f be convex, x ∈ X and v ∈ Rn. Since X is open there exists τ > 0
s.t. for all t ∈ (0, τ ] we have that x + tv ∈ X. Using the Taylor expansion given in
the hint we obtain

0
Hint
≤ f(x+ tv)− f(x)− tv>∇f(x) =

t2

2
v>∇2f(x)v + o(t2)

Multiplying both sides with 2
t2

yields

0 ≤ v>∇2f(x)v + 2
o(t2)

t2︸ ︷︷ ︸
→0

.

1



Let conversely ∇2f(z) be positive semidefinite for all z ∈ X and let x, y ∈ X. Using
the Taylor expansion we have

f(y) = f(x+(y−x)) = f(x)+(y−x)>∇f(x)+
1

2
(y − x)>∇2f(x+ t(y − x))(y − x)︸ ︷︷ ︸

≥0 by assumption.

and therefore
f(y)− f(x) ≥ (y − x)>∇f(x),

which means that f is convex.

Exercise 2 (2 Points). Let X ⊂ Rn open and convex, A ∈ Rn×n positive semidef-
inite, b ∈ Rn, c ∈ R. Show that that the quadratic form f : X → R defined
as

f(x) :=
1

2
x>Ax+ b>x+ c,

is convex.

Solution. To show that f is convex it suffices to show that the Hessian ∇2f(x) is
positive semidefinite, since f is twice continuously differentiable. We start rewriting
f(x) in terms of finite sums:

f(x) =
1

2

n∑
i=1

xi

n∑
j=1

aijxj +
n∑
i=1

xibi + c

=
1

2

n∑
i=1

xi

n∑
j=1,
j 6=i

aijxj +
1

2

n∑
i=1

aiix
2
i +

n∑
i=1

xibi + c

We now proceed computing the first and second order partial derivatives:

∂f(x)

∂xk
=

1

2

∑
j=1,
j 6=k

akjxj +
1

2

∑
i=1,
i 6=k

aikxi + akkxk + bk

=
1

2

∑
j=1

akjxj +
1

2

∑
i=1

aikxi + bk

Then we have for the gradient of f :

∇f(x) =
1

2
(A+ A>)x+ b.

The second order derivatives are given as:

∂2f(x)

∂x2k
=

1

2
akk +

1

2
akk = akk,

and
∂2f(x)

∂xk∂xl
=

1

2
akl +

1

2
alk.
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The Hessian is then given as

∇2f(x) =
1

2
(A+ A>).

Since A is positive semidefinite also the Hessian ∇2f(x) is positive semidefinite:

v>
1

2
(A+ A>)v = v>Av ≥ 0.

Exercise 3 (2 Points). Let E be an Euclidean space, with norm ‖·‖. Show that the
subdifferential at zero is given by

∂ ‖·‖ (0) = {y ∈ E : ‖y‖∗ ≤ 1},

where ‖·‖∗ denotes the dual norm given by

‖y‖∗ = sup
‖x‖≤1

〈y, x〉.

Solution.
p ∈ ∂ ‖·‖ (0) ⇔ 〈p, y〉 ≤ ‖y‖ ,∀y ∈ E

⇔ 〈p, y〉
‖y‖

≤ 1,∀y 6= 0

⇔ sup
y 6=0

〈p, y〉
‖y‖

≤ 1.

⇔ sup
‖y‖=1

〈p, y〉 ≤ 1 ⇔ ‖p‖∗ ≤ 1.

Exercise 4 (4 Points). Compute the subdifferential of the following functions:

• f : Rn → R, f(x) = ‖x‖1.

• f : Rn → R, f(x) = ‖x‖∞.

• f : Rn×n → R, f(X) =
∑n

i=1

(∑n
j=1(Xi,j)

2
)1/2

.

• f : E→ R, f(x) = δC(x) for a closed convex set C ⊂ E.

Solution. First, we show that in general it holds that

∂ ‖·‖ (x) = {p ∈ E : 〈p, x〉 = ‖x‖ , ‖p‖∗ ≤ 1}
w.t.s.
= {p ∈ E : ‖x‖+ 〈p, y − x〉 ≤ ‖y‖ ,∀y ∈ E}.

(1)

for a norm ‖·‖ on an Euclidean space E. Note that if x = 0 we recover the result from
the previous exercise. For that, we need a generalized Cauchy-Schwarz inequality:

〈x, y〉 = ‖x‖ 〈 x
‖x‖

, y〉 ≤ ‖x‖ · sup
‖z‖≤1
〈z, y〉 = ‖x‖ ‖y‖∗ , ∀x, y ∈ E. (2)
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Now take p ∈ E with 〈p, x〉 = ‖x‖, ‖p‖∗ ≤ 1. Then we have

〈p, y − x〉+ ‖x‖ = 〈p, y〉 − 〈p, x〉+ ‖x‖ = 〈p, y〉 ≤ ‖y‖ ‖p‖∗ ≤ ‖y‖ ,∀y ∈ E.

Hence p ∈ ∂ ‖·‖ (x). Conversely take p ∈ ∂ ‖·‖ (x). Then we have

〈p, y − x〉+ ‖x‖ ≤ ‖y‖ ,∀y ∈ E
⇔ ‖x‖ − 〈p, x〉+ sup

y
〈p, y〉 − ‖y‖ ≤ 0 (3)

The supremum evaluates as

sup
y
〈p, y〉 − ‖y‖ =

{
0, ‖p‖∗ ≤ 1

∞, otherwise.
.

We show this as the following. Assume ‖p‖∗ > 1. Hence there is some vector z ∈ E,
‖z‖ ≤ 1 and 〈p, z〉 > 1. It can be seen that the above supremum is unbounded, i.e.
take some y = tz, t(〈p, z〉 − ‖z‖) → ∞ for t → ∞. Now take ‖p‖∗ ≤ 1, then we
have 〈p, y〉 − ‖y‖ ≤ ‖y‖ (‖p‖∗ − 1) ≤ 0, where equality holds for y = 0.

Furthermore, we have

0 ≥ −〈p, x〉+ ‖x‖ ≥ −‖x‖ ‖p‖∗ + ‖x‖ = ‖x‖ (1− ‖p‖∗) ≥ 0

Hence −〈p, x〉+ ‖x‖ = 0 which implies ‖x‖ = 〈p, x〉.

• The dual norm of ‖·‖1 is clearly ‖·‖∞ and vice versa. Hence,

∂ ‖·‖1 (x) = {p ∈ Rn : ‖p‖∞ ≤ 1, 〈p, x〉 = ‖x‖1},

=

{
p ∈ Rn :

{
pi ∈ [−1, 1], if xi = 0

pi = sign(xi), otherwise.

}
.

(4)

∂ ‖·‖∞ (x) = {p ∈ Rn : ‖p‖1 ≤ 1, 〈p, x〉 = ‖x‖∞}. (5)

• It can be easily verified that f(X) =
∑n

i=1

(∑n
j=1(Xi,j)

2
)1/2

=: ‖X‖2,1 is a
norm on Rn×n. The dual norm of ‖X‖2,1 is ‖X‖2,∞ = max1≤i≤n ‖Xi‖2, where
Xi ∈ Rn denotes the i-th row of X. Hence we have

∂ ‖·‖2,1 (X) = {P ∈ Rn×n : ‖P‖2,∞ ≤ 1, 〈P,X〉 = ‖X‖2,1}, (6)

• Take a point x ∈ dom f . Then the subgradients g ∈ ∂f(x) fulfill

〈g, y − x〉 ≤ 0,∀y ∈ C ⇔ g ∈ NC(x).

Hence ∂f(x) = Nc(x).
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Exercise 5 (4 Points). Consider the nuclear norm ‖·‖nuc : Rn×n → R given by

‖X‖nuc =
n∑
i=1

|σi(X)| = ‖σ(X)‖1 ,

where σi(X) ∈ R is the i-th singular value of X ∈ Rn×n. Show that the subdifferen-
tial at point X ∈ Rn×n with s ≥ 0 zero singular values is given as

∂ ‖·‖nuc (X) =
{
U1V

>
1 + U2MV >2 : M ∈ Rs×s, ‖M‖spec ≤ 1

}
, (7)

where U =
[
U1 U2

]
and V =

[
V1 V2

]
are given by the singular value decomposition

of X = UΣV >, with U1 and V1 having n− s columns. Furthermore ‖·‖spec denotes
the spectral norm, i.e., the largest singular value.

Solution. Denote by 〈X, Y 〉 = tr(XTY ). First we show that the dual norm of the
nuclear norm is the spectral norm, i.e.,

sup∑
i σi(Y )≤1

〈X, Y 〉 = σ1(X).

Clearly, sup∑
i σi(Y )≤1 〈X, Y 〉 ≥ σ1(X) since the supremum is bigger than the func-

tion at the feasible candidate Y = u1v
T
1 (for X = UΣV T ) for which the supremum

evaluates to 〈u1vT1 , UΣV T 〉 = σ1(X). The other inequality (again with X = UΣV T )
follows from von Neumann’s trace inequality tr(AB) ≤

∑n
i=1 σi(A)σi(B).

sup∑
i σi(Y )≤1

〈Y,X〉 = sup∑
i σi(Y )≤1

tr(Y TX) ≤ sup∑
i σi(Y )≤1

n∑
i=1

σi(X)σi(Y ) = σ1(X). (8)

Hence, from the previous solution, it then follows that

∂ ‖X‖nuc = {Y ∈ Rn×n : 〈X, Y 〉 = ‖X‖nuc , ‖Y ‖spec ≤ 1}. (9)

We finish the proof by showing that (7) and (9) are the same. Denote byX = U1ΣV
T
1

denote the compact SVD of X.
First we take some Y that satisfies (9), i.e., 〈X, Y 〉 = ‖X‖nuc and ‖Y ‖spec ≤ 1

and show it is in (7). For that, consider the subspace S = {U1WV T
1 : W ∈ Rr×r}

where r = n− s and its orthogonal complement S⊥ = {U2MV T
2 : M ∈ Rs×s}. Then

we can write Y = ΠS(Y ) + ΠS⊥(Y ) = U1WV T
1 + U2MV T

2 for some W and M .
Since we have

〈Y,X〉 = 〈U1WV T
1 + U2MV T

2 , U1ΣV
T
1 〉 = 〈U1WV T

1 , U1ΣV
T
1 〉

= tr(V T
1 W

TUT
1 UΣV1) = tr(W TΣ)

assumption
= tr(Σ)

(10)

we can conclude that W = I and hence Y = U1V
T
1 + U2MV T

2 . Since projections
always have Lipschitz constant less or equal one we have that

‖M‖spec =
∥∥U2MV T

2

∥∥
spec = ‖ΠS⊥(Y )‖spec ≤ ‖Y ‖spec

assumption
≤ 1,
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where we used the unitary invariance of the spectral norm in the first equality.
Conversely take some U1V

T
1 + U2MV T

2 from (7) with ‖M‖spec ≤ 1 and X =

U1ΣV
T
1 . We show that it satisfies (9):

〈U1V
T
1 + U2MV T

2 , U1ΣV
T
1 〉 = tr(V1UT

1 UΣV T
1 ) = tr(Σ) = ‖X‖nuc .

For the spectral norm we use the fact that if ‖Ax‖2 ≤ ‖x‖2, then ‖A‖spec ≤ 1.∥∥(U1V
T
1 + U2MV T

2 )x
∥∥2 = 〈U1V

T
1 x+ U2MV T

2 x, U1V
T
1 x+ U2MV T

2 x〉
= 〈x, (U1V

T
1 + U2MV T

2 )T (U1V
T
1 + U2MV T

2 )x〉
= 〈x, (V1UT

1 U1V
T
1 x〉+ 〈x, V2MTUT

2 U2MV T
2 x〉

+〈x, V1UT
1 U2MV T

2 x〉+ 〈x, V2MTUT
2 U1V

T
1 x〉︸ ︷︷ ︸

=0

= 〈V T
1 x, (V

T
1 x〉+ 〈MV T

2 x,MV T
2 x〉

=
∥∥V T

1 x1
∥∥2 +

∥∥MV T
2 x2

∥∥
assumption
≤ ‖x1‖2 + ‖x2‖2 = ‖x‖2 ,

(11)

where we decomposed x = x1 +x2 onto the subspace spanned by V T
2 and its orthog-

onal complement in the second to last step.

6



1 Image Cartooning
Finish the programming exercise from the second exercise sheet.
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