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Gradient and Subdifferential (12 Points + 4 Bonus)

Exercise 1 (4 Points). Let X C R" open and convex and let f : X — R be twice
continuously differentiable. Prove the equivalence of the following statements:

e f is convex.

e Forall € X the Hessian V2 f(z) is positive semidefinite (Vv € R" : v V2 f(z)v >
0).

Hints: You can use that for z,y € X it holds that f is convex iff

(y —2) " Vf(x) < fly) — fl2).

Further recall that there are two variants of the Taylor expansion:
t2
flz+tv) = f(x) +to V() + EUTVQf($)U + o(t?)

Sh T o(t?) _
with lim; o =5> = 0 and

flx4+v) = f(x)+v V() + %vTvzf(x + tv)v

for appropriate t € (0,1).

Solution. Let f be convex, x € X and v € R". Since X is open there exists 7 > 0
s.t. for all t € (0, 7] we have that x 4+ tv € X. Using the Taylor expansion given in
the hint we obtain

Hint

0 < flz+tv)— f(z)—to' Vf(z) = gvTVQf(:E)’U + o(t?)

Multiplying both sides with t% yields

t2
0< vTVQf(:U)v+2%.
——
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Let conversely V2 f(z) be positive semidefinite for all z € X and let z,y € X. Using
the Taylor expansion we have

(y—2) V2 f(z+ty —2))(y — o)

TV
>0 by assumption.

DN | —

fy)=fla+y—=) = flx)+(y—2) Vf(x)+

and therefore
fly) = f(x) > (y — )"V f(),

which means that f is convex.

Exercise 2 (2 Points). Let X C R” open and convex, A € R"*" positive semidef-
inite, b € R, ¢ € R. Show that that the quadratic form f : X — R defined
as

1
f(z):= QxTAa: +b'w+oc,

1S convex.

Solution. To show that f is convex it suffices to show that the Hessian V2f(z) is
positive semidefinite, since f is twice continuously differentiable. We start rewriting
f(z) in terms of finite sums:

flz) = %leizlaijxj + lezb, +c
1= j= =
= ji= = i=

J#

We now proceed computing the first and second order partial derivatives:

of(x) 1 1
= - apjTj + = Qi Ti + QppTy + b
o 2; kjLj 2; k kkTk T O
J#k i#k
1 1
252‘1@%""52@%%"'[)’6
j=1 i=1

Then we have for the gradient of f:

Vi) = %(A +AT)g 4 b,

The second order derivatives are given as:

Pflx) 1 1
Fra o Qkk + o Qkk = Qkk

and 82f( ) . )
xXr
8xk8xl - §akl + §alk'
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The Hessian is then given as
2 1 T
Vif(x) = §(A—|—A ).
Since A is positive semidefinite also the Hessian V2 f(x) is positive semidefinite:
1
UTE(A + AN =v"Av > 0.

Exercise 3 (2 Points). Let E be an Euclidean space, with norm |[|-||. Show that the
subdifferential at zero is given by

O[(0) ={y € E: [yl <1},

where |||, denotes the dual norm given by

[l=||<1
Solution.
ped|0) & (p,y) <|yll,Vy € E

o Y g
[yl

& swp (p,y) <1
y#0 HZJH

& \\Slnlp p,y) <1 & |pll, <1
y||=1

Exercise 4 (4 Points). Compute the subdifferential of the following functions:
o [R" =R, f(z) = ||z,
o [iR" =R, f(z) = [|lz] -

1/2

o [iRVT SR [(X) = T, (S5 (X))
e f:E—R,f(zx)=0dc(z) for a closed convex set C C E.

Solution. First, we show that in general it holds that

-l (x) ={p e E: (p,x) = ||z, [pll, <1}

Wb, (1)
= Ape B 2|+ (py — ) < ||y||,Vy € E}.

for a norm ||-|| on an Euclidean space E. Note that if z = 0 we recover the result from
the previous exercise. For that, we need a generalized Cauchy-Schwarz inequality:

T
(z,y) = ||z <m,y> < ||zl ”81”151<Z,y> = [zl llyll, , Vz,y € E. (2)
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Now take p € E with (p,z) = ||z||, ||p|l, < 1. Then we have

0,y —x) + |zl = (,y) — (,2) + |lz|l = (p, y) < |yl lIpll, < llyll, Yy € E.

Hence p € 0 ||-|| (x). Conversely take p € 0 ||-|| (x). Then we have

(py — ) +||z|| < |lyll, Yy € E
& ) = () +sup (p,y) — |yl <0 (3)
i

The supremum evaluates as

0, pll,<1
sup (p,y) — |lyll = {OO

y otherwise.

We show this as the following. Assume ||p||, > 1. Hence there is some vector z € E,

|z|l <1 and (p,z) > 1. It can be seen that the above supremum is unbounded, i.e.

take some y = tz, t((p,z) — ||z]|) — oo for t — oo. Now take ||p||, < 1, then we

have (p,y) — ||yl < ||yl (Ilpll, — 1) < 0, where equality holds for y = 0.
Furthermore, we have

0= —(p,2) + =l = = [l [l lpll, + ll=fl = fl=]l (1 = {lpll,) = 0
Hence —(p, z) + ||z|| = 0 which implies ||z| = (p, x).
e The dual norm of ||-||; is clearly ||-||, and vice versa. Hence,

Al () ={p € R" : [Ipllo, < L {p,2) = ||z[l},

e[-1,1 if 7, = 4
B A e e I R R (4)
pi = sign(z;), otherwise.
Ol () ={p € R" : |Ipll; < 1,{p, z) = ||lz[| . }- (5)
1/2
o It can be easily verified that f(X) = 37, (z;;l(Xi,j)Q) — || X]ly, is &

norm on R™". The dual norm of [ X||, is | X, , = maxi<i<, || Xill,, where
X; € R™ denotes the i-th row of X. Hence we have

O -llgy (X) ={P e R"™ : [|Ply o, < L(P,X) = [[Xll5,}, (6)
e Take a point x € dom f. Then the subgradients g € 0f(z) fulfill
(9y—2) <0,Vye C & g€ Ne(w).

Hence 0f(z) = N.(z).



Exercise 5 (4 Points). Consider the nuclear norm ||| .. : R"*" — R given by

[ X e = Z |03 (X)) = llo(X)ly ,

where 0;(X) € R is the i-th singular value of X € R™". Show that the subdifferen-
tial at point X € R™™ with s > 0 zero singular values is given as

e () = {U0VT + 020 M € R Moo <1}, ()

where U = [U 1 Ug} and V = [Vl VQ] are given by the singular value decomposition
of X = UXV", with U; and V; having n — s columns. Furthermore [/l ¢pec denotes
the spectral norm, i.e., the largest singular value.

Solution. Denote by (X,Y) = tr(X7Y). First we show that the dual norm of the
nuclear norm is the spectral norm, i.e.,

sup  (X,Y) =o1(X).

Zio'i(y)fl

Clearly, supy- ;. yy<1 (X,Y) > 01(X) since the supremum is bigger than the func-
tion at the feasible candidate Y = w v (for X = UXVT) for which the supremum
evaluates to (ujvl ,UXVT) = ¢1(X). The other inequality (again with X = UXV7T)
follows from von Neumann’s trace inequality tr(AB) < " 0;(A)o;(B).

sip (V,X)= sup  t(YTX) < sup (X)oi(Y) = 1 (X). (8)
2 0i(Y)<1 2 0i(YV)<1 2 0(Y)<S1 4

Hence, from the previous solution, it then follows that

O X[ ye = Y € R 2 (X Y) = [| X e s Y llgpee < 13- (9)

nuc nuc ’

We finish the proof by showing that (7) and (9) are the same. Denote by X = U;XV/"
denote the compact SVD of X.

First we take some Y that satisfies (9), i.e., (X,Y) = || X][,,. and [V, <1
and show it is in (7). For that, consider the subspace S = {U;WV{I : W € R™*"}
where r = n — s and its orthogonal complement S+ = {UyMV}l' : M € R***}. Then
we can write Y = Hg(Y) + g (V) = UWVT + UsM VT for some W and M.

Since we have

(v, X) = (UWVE +U,MVE, UV = (0w Ve, U sV

assumption (10)
= e (VY WTUTUSV) = tr(WTS) 27" 1(30)

we can conclude that W = I and hence Y = U, V[ + UsMV,'. Since projections
always have Lipschitz constant less or equal one we have that

assumption

1Ml gpee = [T2MV | e = s (V)llgpee < MY llgpee = L,
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where we used the unitary invariance of the spectral norm in the first equality.
Conversely take some U3 ViT + Uy M V3 from (7) with |M]| .. < 1 and X =

spec
U1 X VT, We show that it satisfies (9):

(U + UMV UV = tr(MUT USRSV = te(3) = [|IX]|

nuc *

For the spectral norm we use the fact that if || Az||> < ||z||°, then ||A]|_.. < 1.

spec

(Vi + UMV )z | UV + UMV e, UV 2 + Uy MV, )

(VT + UMV (VT 4 UMV )

(VUL UVEZ) 4+ (2, VaMTUT U, MV o)

+, VIUT UMV x) + (x, VQMTUZTUﬂ/lTxZ an
=0

= (V'a, V'a) + (MVy o, MVy )

= [V |* + MV, s

assumption 9 9 9
< ™+ el = =7

"=
=
=

z,
z,

where we decomposed x = 1 + x5 onto the subspace spanned by V,I' and its orthog-
onal complement in the second to last step.



1 Image Cartooning

Finish the programming exercise from the second exercise sheet.



