Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu
Exercises: E. Laude, T. Möllenhoff
Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 02.09.023
Monday, 22.05.2017, 12:15-14:00
Submission deadline: Wednesday, 17.05.2017, Room 02.09.023

Gradient and Subdifferential (12 Points +4 Bonus)

Exercise 1 (4 Points). Let $X \subset \mathbb{R}^{n}$ open and convex and let $f: X \rightarrow \mathbb{R}$ be twice continuously differentiable. Prove the equivalence of the following statements:

- f is convex.
- For all $x \in X$ the Hessian $\nabla^{2} f(x)$ is positive semidefinite $\left(\forall v \in \mathbb{R}^{n}: v^{\top} \nabla^{2} f(x) v \geq\right.$ $0)$.

Hints: You can use that for $x, y \in X$ it holds that f is convex iff

$$
(y-x)^{\top} \nabla f(x) \leq f(y)-f(x)
$$

Further recall that there are two variants of the Taylor expansion:

$$
f(x+t v)=f(x)+t v^{\top} \nabla f(x)+\frac{t^{2}}{2} v^{\top} \nabla^{2} f(x) v+o\left(t^{2}\right)
$$

with $\lim _{t \rightarrow 0} \frac{o\left(t^{2}\right)}{t^{2}}=0$ and

$$
f(x+v)=f(x)+v^{\top} \nabla f(x)+\frac{1}{2} v^{\top} \nabla^{2} f(x+t v) v
$$

for appropriate $t \in(0,1)$.
Solution. Let f be convex, $x \in X$ and $v \in \mathbb{R}^{n}$. Since X is open there exists $\tau>0$ s.t. for all $t \in(0, \tau]$ we have that $x+t v \in X$. Using the Taylor expansion given in the hint we obtain

$$
0 \stackrel{\text { Hint }}{\leq} f(x+t v)-f(x)-t v^{\top} \nabla f(x)=\frac{t^{2}}{2} v^{\top} \nabla^{2} f(x) v+o\left(t^{2}\right)
$$

Multiplying both sides with $\frac{2}{t^{2}}$ yields

$$
0 \leq v^{\top} \nabla^{2} f(x) v+2 \underbrace{\frac{o\left(t^{2}\right)}{t^{2}}}_{\rightarrow 0}
$$

Let conversely $\nabla^{2} f(z)$ be positive semidefinite for all $z \in X$ and let $x, y \in X$. Using the Taylor expansion we have
$f(y)=f(x+(y-x))=f(x)+(y-x)^{\top} \nabla f(x)+\frac{1}{2} \underbrace{(y-x)^{\top} \nabla^{2} f(x+t(y-x))(y-x)}_{\geq 0 \text { by assumption. }}$
and therefore

$$
f(y)-f(x) \geq(y-x)^{\top} \nabla f(x)
$$

which means that f is convex.
Exercise 2 (2 Points). Let $X \subset \mathbb{R}^{n}$ open and convex, $A \in \mathbb{R}^{n \times n}$ positive semidefinite, $b \in \mathbb{R}^{n}, c \in \mathbb{R}$. Show that that the quadratic form $f: X \rightarrow \mathbb{R}$ defined as

$$
f(x):=\frac{1}{2} x^{\top} A x+b^{\top} x+c,
$$

is convex.
Solution. To show that f is convex it suffices to show that the Hessian $\nabla^{2} f(x)$ is positive semidefinite, since f is twice continuously differentiable. We start rewriting $f(x)$ in terms of finite sums:

$$
\begin{aligned}
f(x) & =\frac{1}{2} \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} a_{i j} x_{j}+\sum_{i=1}^{n} x_{i} b_{i}+c \\
& =\frac{1}{2} \sum_{i=1}^{n} x_{i} \sum_{\substack{j=1, j \neq i}}^{n} a_{i j} x_{j}+\frac{1}{2} \sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{i=1}^{n} x_{i} b_{i}+c
\end{aligned}
$$

We now proceed computing the first and second order partial derivatives:

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{k}} & =\frac{1}{2} \sum_{\substack{j=1, j \neq k}} a_{k j} x_{j}+\frac{1}{2} \sum_{\substack{i=1, i \neq k}} a_{i k} x_{i}+a_{k k} x_{k}+b_{k} \\
& =\frac{1}{2} \sum_{j=1} a_{k j} x_{j}+\frac{1}{2} \sum_{i=1} a_{i k} x_{i}+b_{k}
\end{aligned}
$$

Then we have for the gradient of f :

$$
\nabla f(x)=\frac{1}{2}\left(A+A^{\top}\right) x+b
$$

The second order derivatives are given as:

$$
\frac{\partial^{2} f(x)}{\partial x_{k}^{2}}=\frac{1}{2} a_{k k}+\frac{1}{2} a_{k k}=a_{k k},
$$

and

$$
\frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{l}}=\frac{1}{2} a_{k l}+\frac{1}{2} a_{l k} .
$$

The Hessian is then given as

$$
\nabla^{2} f(x)=\frac{1}{2}\left(A+A^{\top}\right)
$$

Since A is positive semidefinite also the Hessian $\nabla^{2} f(x)$ is positive semidefinite:

$$
v^{\top} \frac{1}{2}\left(A+A^{\top}\right) v=v^{\top} A v \geq 0
$$

Exercise 3 (2 Points). Let \mathbb{E} be an Euclidean space, with norm $\|\cdot\|$. Show that the subdifferential at zero is given by

$$
\partial\|\cdot\|(0)=\left\{y \in \mathbb{E}:\|y\|_{*} \leq 1\right\}
$$

where $\|\cdot\|_{*}$ denotes the dual norm given by

$$
\|y\|_{*}=\sup _{\|x\| \leq 1}\langle y, x\rangle .
$$

Solution.

$$
\begin{aligned}
p \in \partial\|\cdot\|(0) & \Leftrightarrow\langle p, y\rangle \leq\|y\|, \forall y \in \mathbb{E} \\
& \Leftrightarrow \frac{\langle p, y\rangle}{\|y\|} \leq 1, \forall y \neq 0 \\
& \Leftrightarrow \sup _{y \neq 0} \frac{\langle p, y\rangle}{\|y\|} \leq 1 \\
& \Leftrightarrow \sup _{\|y\|=1}\langle p, y\rangle \leq 1 \Leftrightarrow\|p\|_{*} \leq 1 .
\end{aligned}
$$

Exercise 4 (4 Points). Compute the subdifferential of the following functions:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{1}$.
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{\infty}$.
- $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, f(X)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(X_{i, j}\right)^{2}\right)^{1 / 2}$.
- $f: \mathbb{E} \rightarrow \overline{\mathbb{R}}, f(x)=\delta_{C}(x)$ for a closed convex set $C \subset \mathbb{E}$.

Solution. First, we show that in general it holds that

$$
\begin{align*}
\partial\|\cdot\|(x) & =\left\{p \in \mathbb{E}:\langle p, x\rangle=\|x\|,\|p\|_{*} \leq 1\right\} \\
& \stackrel{\text { w.t.s. }}{=}\{p \in \mathbb{E}:\|x\|+\langle p, y-x\rangle \leq\|y\|, \forall y \in \mathbb{E}\} . \tag{1}
\end{align*}
$$

for a norm $\|\cdot\|$ on an Euclidean space \mathbb{E}. Note that if $x=0$ we recover the result from the previous exercise. For that, we need a generalized Cauchy-Schwarz inequality:

$$
\begin{equation*}
\langle x, y\rangle=\|x\|\left\langle\frac{x}{\|x\|}, y\right\rangle \leq\|x\| \cdot \sup _{\|z\| \leq 1}\langle z, y\rangle=\|x\|\|y\|_{*}, \forall x, y \in \mathbb{E} \tag{2}
\end{equation*}
$$

Now take $p \in \mathbb{E}$ with $\langle p, x\rangle=\|x\|,\|p\|_{*} \leq 1$. Then we have

$$
\langle p, y-x\rangle+\|x\|=\langle p, y\rangle-\langle p, x\rangle+\|x\|=\langle p, y\rangle \leq\|y\|\|p\|_{*} \leq\|y\|, \forall y \in \mathbb{E}
$$

Hence $p \in \partial\|\cdot\|(x)$. Conversely take $p \in \partial\|\cdot\|(x)$. Then we have

$$
\begin{align*}
& \langle p, y-x\rangle+\|x\| \leq\|y\|, \forall y \in \mathbb{E} \\
\Leftrightarrow & \|x\|-\langle p, x\rangle+\sup _{y}\langle p, y\rangle-\|y\| \leq 0 \tag{3}
\end{align*}
$$

The supremum evaluates as

$$
\sup _{y}\langle p, y\rangle-\|y\|=\left\{\begin{array}{ll}
0, & \|p\|_{*} \leq 1 \\
\infty, & \text { otherwise }
\end{array} .\right.
$$

We show this as the following. Assume $\|p\|_{*}>1$. Hence there is some vector $z \in \mathbb{E}$, $\|z\| \leq 1$ and $\langle p, z\rangle>1$. It can be seen that the above supremum is unbounded, i.e. take some $y=t z, t(\langle p, z\rangle-\|z\|) \rightarrow \infty$ for $t \rightarrow \infty$. Now take $\|p\|_{*} \leq 1$, then we have $\langle p, y\rangle-\|y\| \leq\|y\|\left(\|p\|_{*}-1\right) \leq 0$, where equality holds for $y=0$.

Furthermore, we have

$$
0 \geq-\langle p, x\rangle+\|x\| \geq-\|x\|\|p\|_{*}+\|x\|=\|x\|\left(1-\|p\|_{*}\right) \geq 0
$$

Hence $-\langle p, x\rangle+\|x\|=0$ which implies $\|x\|=\langle p, x\rangle$.

- The dual norm of $\|\cdot\|_{1}$ is clearly $\|\cdot\|_{\infty}$ and vice versa. Hence,

$$
\begin{align*}
& \partial\|\cdot\|_{1}(x)=\left\{p \in \mathbb{R}^{n}:\|p\|_{\infty} \leq 1,\langle p, x\rangle=\|x\|_{1}\right\}, \\
&=\left\{p \in \mathbb{R}^{n}:\left\{\begin{array}{ll}
p_{i} \in[-1,1], & \text { if } x_{i}=0 \\
p_{i}=\operatorname{sign}\left(x_{i}\right), & \text { otherwise. }
\end{array}\right\} .\right. \tag{4}\\
& \partial\|\cdot\|_{\infty}(x)=\left\{p \in \mathbb{R}^{n}:\|p\|_{1} \leq 1,\langle p, x\rangle=\|x\|_{\infty}\right\} . \tag{5}
\end{align*}
$$

- It can be easily verified that $f(X)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left(X_{i, j}\right)^{2}\right)^{1 / 2}=:\|X\|_{2,1}$ is a norm on $\mathbb{R}^{n \times n}$. The dual norm of $\|X\|_{2,1}$ is $\|X\|_{2, \infty}=\max _{1 \leq i \leq n}\left\|X_{i}\right\|_{2}$, where $X_{i} \in \mathbb{R}^{n}$ denotes the i-th row of X. Hence we have

$$
\begin{equation*}
\partial\|\cdot\|_{2,1}(X)=\left\{P \in \mathbb{R}^{n \times n}:\|P\|_{2, \infty} \leq 1,\langle P, X\rangle=\|X\|_{2,1}\right\}, \tag{6}
\end{equation*}
$$

- Take a point $x \in \operatorname{dom} f$. Then the subgradients $g \in \partial f(x)$ fulfill

$$
\langle g, y-x\rangle \leq 0, \forall y \in C \Leftrightarrow g \in N_{C}(x)
$$

Hence $\partial f(x)=N_{c}(x)$.

Exercise 5 (4 Points). Consider the nuclear norm $\|\cdot\|_{\text {nuc }}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ given by

$$
\|X\|_{\mathrm{nuc}}=\sum_{i=1}^{n}\left|\sigma_{i}(X)\right|=\|\sigma(X)\|_{1}
$$

where $\sigma_{i}(X) \in \mathbb{R}$ is the i-th singular value of $X \in \mathbb{R}^{n \times n}$. Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$
\begin{equation*}
\partial\|\cdot\|_{\mathrm{nuc}}(X)=\left\{U_{1} V_{1}^{\top}+U_{2} M V_{2}^{\top}: M \in \mathbb{R}^{s \times s},\|M\|_{\text {spec }} \leq 1\right\} \tag{7}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ are given by the singular value decomposition of $X=U \Sigma V^{\top}$, with U_{1} and V_{1} having $n-s$ columns. Furthermore $\|\cdot\|_{\text {spec }}$ denotes the spectral norm, i.e., the largest singular value.

Solution. Denote by $\langle X, Y\rangle=\operatorname{tr}\left(X^{T} Y\right)$. First we show that the dual norm of the nuclear norm is the spectral norm, i.e.,

$$
\sup _{\sum_{i} \sigma_{i}(Y) \leq 1}\langle X, Y\rangle=\sigma_{1}(X)
$$

Clearly, $\sup _{\sum_{i} \sigma_{i}(Y) \leq 1}\langle X, Y\rangle \geq \sigma_{1}(X)$ since the supremum is bigger than the function at the feasible candidate $Y=u_{1} v_{1}^{T}$ (for $X=U \Sigma V^{T}$) for which the supremum evaluates to $\left\langle u_{1} v_{1}^{T}, U \Sigma V^{T}\right\rangle=\sigma_{1}(X)$. The other inequality (again with $X=U \Sigma V^{T}$) follows from von Neumann's trace inequality $\operatorname{tr}(A B) \leq \sum_{i=1}^{n} \sigma_{i}(A) \sigma_{i}(B)$.

$$
\begin{equation*}
\sup _{\sum_{i} \sigma_{i}(Y) \leq 1}\langle Y, X\rangle=\sup _{\sum_{i} \sigma_{i}(Y) \leq 1} \operatorname{tr}\left(Y^{T} X\right) \leq \sup _{\sum_{i} \sigma_{i}(Y) \leq 1} \sum_{i=1}^{n} \sigma_{i}(X) \sigma_{i}(Y)=\sigma_{1}(X) . \tag{8}
\end{equation*}
$$

Hence, from the previous solution, it then follows that

$$
\begin{equation*}
\partial\|X\|_{\mathrm{nuc}}=\left\{Y \in \mathbb{R}^{n \times n}:\langle X, Y\rangle=\|X\|_{\mathrm{nuc}},\|Y\|_{\mathrm{spec}} \leq 1\right\} . \tag{9}
\end{equation*}
$$

We finish the proof by showing that (1) and (??) are the same. Denote by $X=$ $U_{1} \Sigma V_{1}^{T}$ denote the compact SVD of X.

First we take some Y that satisfies (??), i.e., $\langle X, Y\rangle=\|X\|_{\text {nuc }}$ and $\|Y\|_{\text {spec }} \leq 1$ and show it is in (1). For that, consider the subspace $S=\left\{U_{1} W V_{1}^{T}: W \in \mathbb{R}^{r \times r}\right\}$ where $r=n-s$ and its orthogonal complement $S^{\perp}=\left\{U_{2} M V_{2}^{T}: M \in \mathbb{R}^{s \times s}\right\}$. Then we can write $Y=\Pi_{S}(Y)+\Pi_{S^{\perp}}(Y)=U_{1} W V_{1}^{T}+U_{2} M V_{2}^{T}$ for some W and M.

Since we have

$$
\begin{align*}
\langle Y, X\rangle & =\left\langle U_{1} W V_{1}^{T}+U_{2} M V_{2}^{T}, U_{1} \Sigma V_{1}^{T}\right\rangle=\left\langle U_{1} W V_{1}^{T}, U_{1} \Sigma V_{1}^{T}\right\rangle \\
& =\operatorname{tr}\left(V_{1}^{T} W^{T} U_{1}^{T} U \Sigma V_{1}\right)=\operatorname{tr}\left(W^{T} \Sigma\right)^{\text {assumption }} \operatorname{tr}(\Sigma) \tag{10}
\end{align*}
$$

we can conclude that $W=I$ and hence $Y=U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}$. Since projections always have Lipschitz constant less or equal one we have that

$$
\|M\|_{\text {spec }}=\left\|U_{2} M V_{2}^{T}\right\|_{\text {spec }}=\left\|\Pi_{S^{\perp}}(Y)\right\|_{\text {spec }} \leq\|Y\|_{\text {spec }} \quad{ }^{\text {assumption }} 1
$$

where we used the unitary invariance of the spectral norm in the first equality.
Conversely take some $U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}$ from (1) with $\|M\|_{\text {spec }} \leq 1$ and $X=$ $U_{1} \Sigma V_{1}^{T}$. We show that it satisfies (??):

$$
\left\langle U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}, U_{1} \Sigma V_{1}^{T}\right\rangle=\operatorname{tr}\left(V_{1} U_{1}^{T} U \Sigma V_{1}^{T}\right)=\operatorname{tr}(\Sigma)=\|X\|_{\text {nuc }}
$$

For the spectral norm we use the fact that if $\|A x\|^{2} \leq\|x\|^{2}$, then $\|A\|_{\text {spec }} \leq 1$.

$$
\begin{align*}
\left\|\left(U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}\right) x\right\|^{2} & =\left\langle U_{1} V_{1}^{T} x+U_{2} M V_{2}^{T} x, U_{1} V_{1}^{T} x+U_{2} M V_{2}^{T} x\right\rangle \\
& =\left\langle x,\left(U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}\right)^{T}\left(U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}\right) x\right\rangle \\
& =\left\langle x,\left(V_{1} U_{1}^{T} U_{1} V_{1}^{T} x\right\rangle+\left\langle x, V_{2} M^{T} U_{2}^{T} U_{2} M V_{2}^{T} x\right\rangle\right. \\
& \underbrace{+\left\langle x, V_{1} U_{1}^{T} U_{2} M V_{2}^{T} x\right\rangle+\left\langle x, V_{2} M^{T} U_{2}^{T} U_{1} V_{1}^{T} x\right\rangle}_{=0} \tag{11}\\
& =\left\langle V_{1}^{T} x,\left(V_{1}^{T} x\right\rangle+\left\langle M V_{2}^{T} x, M V_{2}^{T} x\right\rangle\right. \\
& =\left\|V_{1}^{T} x_{1}\right\|^{2}+\left\|M V_{2}^{T} x_{2}\right\| \\
& \begin{array}{c}
\text { assumption } \\
\leq
\end{array}\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}=\|x\|^{2},
\end{align*}
$$

where we decomposed $x=x_{1}+x_{2}$ onto the subspace spanned by V_{2}^{T} and its orthogonal complement in the second to last step.

1 Image Cartooning

Finish the programming exercise from the second exercise sheet.

