Lecture: T. Wu
Exercises: E. Laude, T. Möllenhoff
Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 4

Room: 02.09.023
Monday, 29.05.2017, 12:15-14:00
Submission deadline: Wednesday, 24.05.2017, Room 02.09.023

Convex Duality

(4 Points +8 Bonus)
Exercise 1 (4 Points). Compute the convex conjugates of the following functions:

1. $f_{1}: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ where $f_{1}(x)=\sqrt{1+x^{2}}$.
2. $f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ where $f_{2}(x)=\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)$.

Don't forget to specify the domains $\operatorname{dom}\left(f_{1}^{*}\right), \operatorname{dom}\left(f_{2}^{*}\right)$.
Solution. 1. The conjugate is defined as

$$
f_{1}^{*}(y)=\sup _{x} x y-\sqrt{1+x^{2}} .
$$

For $|y|>1$, the supremum is $+\infty$, since due to the subadditivity of $\sqrt{ }$. we have

$$
x y-\sqrt{1+x^{2}} \geq x y-\sqrt{1}-\sqrt{x^{2}}=x y-|x|-1,
$$

and the choice $x=t \operatorname{sign}(y), t \rightarrow+\infty$ yields $t(|y|-1)-1$ with drives the lower bound to infinity.
Now take $|y|<1$. Setting the derivative of the function inside the supremum to zero yields

$$
y=\frac{x}{\sqrt{1+x^{2}}} \Rightarrow x= \pm \frac{y}{\sqrt{1-y^{2}}} .
$$

Taking the choice $x=\frac{y}{\sqrt{1-y^{2}}}$ (it leads to a larger value inside the supremum), we have:

$$
f^{*}(y)=y \frac{y}{\sqrt{1-y^{2}}}-\sqrt{1+\frac{y^{2}}{1-y^{2}}}=\frac{y^{2}}{\sqrt{1-y^{2}}}-\sqrt{\frac{1}{1-y^{2}}}=-\sqrt{1-y^{2}}
$$

with $\operatorname{dom}\left(f^{*}\right)=[-1,1]$.
2. The conjugate is defined as:

$$
f_{2}^{*}(y)=\sup _{x \in \mathbb{R}^{n}} \sum_{i=1}^{n} x_{i} y_{i}-\log \left(\sum_{i=1}^{n} \exp \left(x_{i}\right)\right) .
$$

We start by computing $\operatorname{dom}\left(f_{2}^{*}\right)$. Take some $y_{i}<0$, then set $x_{i}=-a$ and $x_{j}=0$ for $i \neq j$. Then the conjugate simplifies to

$$
\sup _{a \in \mathbb{R}}-a y_{i}-\log (n-1+\exp (-a))
$$

and one can see that for $a \rightarrow \infty$ this becomes $+\infty$.
Next, take $x_{i}=a \cdot \operatorname{sgn}\left(y_{i}\right)$, then we have for the conjugate:

$$
\begin{align*}
& \sup _{a \in \mathbb{R}} a\|y\|_{1}-\log \left(\sum \exp \left(a \cdot \operatorname{sgn}\left(y_{i}\right)\right)\right) \\
& =\sup _{a \in \mathbb{R}} a\|y\|_{1}-a-\log \left(\sum \exp \left(\operatorname{sgn}\left(y_{i}\right)\right)\right) \tag{1}\\
& =\sup _{a \in \mathbb{R}} a\left(\|y\|_{1}-1\right)-\log \left(\sum \exp \left(\operatorname{sgn}\left(y_{i}\right)\right)\right),
\end{align*}
$$

which becomes infinite if $\|y\|_{1} \neq 1$.
Setting the gradient of the function inside the supremum to zero yields

$$
y_{i}=\frac{\exp \left(x_{i}\right)}{\sum_{j} \exp \left(x_{j}\right)} \Leftrightarrow x_{i}=\log y_{i} \sum_{j} \exp \left(x_{j}\right)
$$

First, we conclude that $\operatorname{dom}\left(f_{2}^{*}\right)=\left\{y \in \mathbb{R}^{n}: y_{i} \geq 0,\|y\|=1\right\}$. Plugging in x_{i} into the function inside the supremum yields

$$
\begin{align*}
& \sum_{i=1}^{n} y_{i} \log y_{i} \sum_{j} \exp \left(x_{j}\right)-\log \left(\sum_{i=1}^{n} \exp \left(\log y_{i} \sum_{j} \exp \left(x_{j}\right)\right)\right) \\
& =\sum_{i=1}^{n} y_{i} \log y_{i}+y_{i} \log \sum_{j} \exp \left(x_{j}\right)-\log \left(\sum_{i=1}^{n} y_{i} \sum_{j} \exp \left(x_{j}\right)\right) \tag{2}\\
& \|y\|_{1}=1 \\
& =\sum_{i=1}^{n} y_{i} \log y_{i}+\log \sum_{j} \exp \left(x_{j}\right)-\log \sum_{j} \exp \left(x_{j}\right) \\
& =\sum_{i} y_{i} \log y_{i} .
\end{align*}
$$

Hence, $f^{*}(y)=\sum_{i} y_{i} \log y_{i}+\delta_{\Delta^{n}}(y)$.
Exercise 2 (4 Points). Compute the convex envelope $f^{* *}$ of the functions

1. $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}, f(x)= \begin{cases}0 & \text { if } x=0, \\ \lambda & \text { if } x \neq 0,|x| \leq 1, \\ \infty & \text { otherwise } .\end{cases}$
2. $f: \mathbb{R}^{n \times n} \rightarrow \overline{\mathbb{R}}, f(X)=\operatorname{rank}(X)+\delta\left\{\|X\|_{\text {spec }} \leq 1\right\}$.
by taking the convex conjugate twice.
Solution. 1. The conjugate is given as

$$
f^{*}(y)=\sup _{|x| \leq 1} x y- \begin{cases}0, & \text { if } x=0 \\ \lambda, & \text { otherwise }\end{cases}
$$

In the case $x=0$ the supremum is 0 , otherwise the supremum is attained at $|y|-\lambda$. Hence, we have

$$
f^{*}(y)=\max \{0,|y|-\lambda\} .
$$

Now, for the biconjugate we have

$$
\begin{equation*}
f^{* *}(x)=\sup _{y} x y-\max \{0,|y|-\lambda\} \tag{3}
\end{equation*}
$$

If $|x|>1$ we can see that the supremum becomes $+\infty$. Now assume $|x| \leq 1$. Assume $|y| \leq \lambda$. Then we have $f^{* *}(x)=\sup _{|y| \leq \lambda} x y=\lambda|x|$. For $|y|>\lambda$ we have that

$$
x y-|y|-\lambda \leq|x||y|-|y|-\lambda=|y| \underbrace{(|x|-1)}_{\leq 0}-\lambda<\lambda|x| .
$$

Hence, the supremum is always attained for $|y| \leq \lambda$. To summarize, we have

$$
f^{* *}(x)=\lambda|x|+\delta\{|x| \leq 1\} .
$$

2. For the proof, we will again make use of von Neumann's trace inequality

$$
\operatorname{tr}\left(X^{T} Y\right) \leq \sum_{i=1}^{n} \sigma_{i}(X) \sigma_{i}(Y)
$$

We start by computing the conjugate:

$$
\begin{align*}
f^{*}(Y) & =\sup _{\|X\|_{\text {spec }} \leq 1} \operatorname{tr}\left(X^{T} Y\right)-\operatorname{rank}(X) \\
& =\sup _{\left\|\Sigma_{X}\right\|_{\text {spec }} \leq 1} \operatorname{tr}\left(V_{X} \Sigma_{X} U_{X}^{T} U_{Y} \Sigma_{Y} V_{Y}^{T}\right)-\operatorname{rank}\left(\Sigma_{X}\right) \\
& =\sup _{\left\|\Sigma_{X}\right\|_{\text {spec }} \leq 1} \operatorname{tr}\left(\Sigma_{X} \Sigma_{Y}\right)-\operatorname{rank}\left(\Sigma_{X}\right) \tag{4}\\
& =\sup _{\|X\|_{\text {spec }} \leq 1} \sum_{i=1}^{n} \sigma_{i}(X) \sigma_{i}(Y)-\operatorname{rank}(X) .
\end{align*}
$$

We had the freedom to choose $U_{X}=U_{Y}$ and $V_{X}=V_{Y}$, since the spectral norm and rank function are unitarily invariant and this choice is optimal due to von Neumann's trace inequality.

Now if $\operatorname{rank}(X)=r$, we have $f^{*}(Y)=\sum_{i=1}^{r} \sigma_{i}(Y)-r$, and hence the conjugate can be expressed as

$$
\begin{equation*}
f^{*}(Y)=\max \left\{0, \sigma_{1}(Y)-1, \ldots, \sum_{i=1}^{r} \sigma_{i}(Y)-r, \ldots, \sum_{i=1}^{n} \sigma_{i}(Y)-n\right\} \tag{5}
\end{equation*}
$$

The largest term in the above maximum is the whose sums only consist of positive terms, which yields:

$$
f^{*}(Y)=\sum_{i=1}^{n} \max \left\{0, \sigma_{i}(Y)-1\right\}
$$

We continue with the biconjugate as above:

$$
\begin{align*}
f^{* *}(X) & =\sup _{Y} \sum_{i=1}^{n} \sigma_{i}(Y) \sigma_{i}(X)-\sum_{i=1}^{n} \max \left\{0, \sigma_{i}(Y)-1\right\} \\
& =\sup _{Y} \sum_{i=1}^{n} \sigma_{i}(Y) \sigma_{i}(X)-\sum_{i=1}^{k(Y)} \sigma_{i}(Y) \tag{6}
\end{align*}
$$

where $k(Y)$ is the number of singular values bigger than 1 . Now if $\|X\|_{\text {spec }}>1$ we see that the coefficient $\left(\sigma_{1}(X)-1\right)$ for $\sigma_{1}(Y)$ is positive, and hence the supremum is $+\infty$.
Next, let $\|X\|_{\text {spec }} \leq 1$. Then if $\|Y\| \leq 1$ we have that $f^{*}(Y)=0$ and the supremum is achieved for $\sigma_{i}(Y)=1$, which evaluates to $\sum_{i} \sigma_{i}(X)=\|X\|_{\text {nuc }}$. Finally, we prove that the supremum is always achieved for some Y with $\|Y\| \leq 1$. Indeed for Y with $\|Y\|>1$ we have the following bound:

$$
\begin{align*}
\sum_{i=1}^{n} & \sigma_{i}(Y) \sigma_{i}(X)-\sum_{i=1}^{k(Y)} \sigma_{i}(Y) \\
& =\sum_{i=1}^{n} \sigma_{i}(Y) \sigma_{i}(X)-\sum_{i=1}^{k(Y)} \sigma_{i}(Y)+\sum_{i=1}^{n} \sigma_{i}(X)-\sum_{i=1}^{n} \sigma_{i}(X) \\
& =\underbrace{\sum_{i=1}^{k(Y)}\left(\sigma_{i}(Y)-1\right)\left(\sigma_{i}(X)-1\right)}_{\leq 0}+\underbrace{\sum_{i=k(Y)+1}^{n}\left(\sigma_{i}(Y)-1\right) \sigma_{i}(X)}_{\leq 0}-k(Y)+\sum_{i=1}^{n} \sigma_{i}(X) \\
\quad< & \sum_{i=1}^{n} \sigma_{i}(X) \tag{7}
\end{align*}
$$

To summarize the above, we have shown that

$$
f^{* *}(X)=\|X\|_{\text {nuc }}+\delta\left\{\|X\|_{\text {spec }} \leq 1\right\}
$$

i.e., the convex envelope of the rank function on the spectral norm unit-ball is the nuclear norm.

Definition. The convex hull of an arbitrary set $C \subset \mathbb{R}^{n}$ is defined as

$$
\begin{equation*}
\operatorname{conv}(C)=\left\{\sum_{i=1}^{p} \lambda_{i} x_{i}: x_{i} \in C, \lambda_{i} \geq 0, \sum_{i=1}^{p} \lambda_{i}=1, p \geq 0\right\} \tag{8}
\end{equation*}
$$

Exercise 3 (4 Points). Show that for a set $C \neq \emptyset$ in \mathbb{R}^{n}, every point of $\operatorname{conv}(C)$ can be expressed as a convex combination of $n+1$ points of C (not necessarily different).

Solution. Suppose we can write a point $x \in \operatorname{conv}(C)$ as a convex combination

$$
\begin{equation*}
x=\sum_{i=1}^{p} \lambda_{i} x_{i}, \lambda_{i} \geq 0, \sum_{i=1}^{p} \lambda_{i}=1, \tag{9}
\end{equation*}
$$

for some $p>n+1$. We will prove that we can write the same point x as a different convex combination involving $p-1$ points. Inductively, this will yield the claim.

Since $p \geq n+2$, we can use exercise 1.4 (Radon's theorem) to partition our p points into 2 nonempty sets $\left\{x_{1}, \ldots, x_{l}\right\},\left\{x_{l+1}, \ldots, x_{p}\right\}$ whose convex hulls share a common point, i.e. $\exists a \in \mathbb{R}^{l}, b \in \mathbb{R}^{p-l}$:

$$
\begin{equation*}
\sum_{i=1}^{l} a_{i} x_{i}=\sum_{i=l+1}^{p} b_{i} x_{i}, \quad a_{i} \geq 0, \sum_{i=1}^{l} a_{i}=1, b_{i} \geq 0, \sum_{i=l+1}^{p} b_{i}=1 . \tag{10}
\end{equation*}
$$

For notational convenience, we index the $p-l$ entries b_{i} from $i=l+1, \ldots, p$. Now, take the multiplier $b_{j} \neq 0$ for which $\frac{\lambda_{j}}{b_{j}} \leq \frac{\lambda_{i}}{b_{i}}$. Solving (10) for x_{j} yields

$$
x_{j}=\frac{\sum_{i=1}^{l} a_{i} x_{i}-\sum_{i=l+1, i \neq j}^{p} b_{i} x_{i}}{b_{j}}
$$

To finish the proof, we substitute x_{j} into (9) and show that the result is a valid convex combination. The substitution yields

$$
\begin{align*}
x & =\sum_{i \neq j} \lambda_{i} x_{i}+\lambda_{j} \frac{\sum_{i=1}^{l} a_{i} x_{i}-\sum_{i=l+1, i \neq j}^{p} b_{i} x_{i}}{b_{j}} \\
& =\sum_{i=1}^{l}\left(\lambda_{i}+\frac{\lambda_{j} a_{i}}{b_{j}}\right) x_{i}+\sum_{i=l+1, i \neq j}^{p}\left(\lambda_{i}-\frac{\lambda_{j} b_{i}}{b_{j}}\right) x_{i} . \tag{11}
\end{align*}
$$

It remains to show that this is indeed a convex combination, i.e., all the $p-1$ multipliers are bigger than zero and sum up to one. The first l multipliers are positive by construction. The last $p-l-1$ multipliers are positive since

$$
\lambda_{i}-\frac{\lambda_{j} b_{i}}{b_{j}} \geq \lambda_{i}-\frac{\lambda_{i} b_{i}}{b_{i}}=0
$$

Finally, for the sum of all coefficients we have:

$$
\begin{align*}
& \sum_{i \neq j} \lambda_{i}+\sum_{i=1}^{l} \frac{\lambda_{j} a_{i}}{b_{j}}-\sum_{i=l+1, i \neq j}^{p} \frac{\lambda_{j} b_{i}}{b_{j}} \tag{12}\\
= & \sum_{i \neq j} \lambda_{i}+\frac{\lambda_{j}}{b_{j}}-\frac{\lambda_{j}}{b_{j}}\left(1-b_{j}\right)=\sum_{i} \lambda_{i}=1 .
\end{align*}
$$

Image Cartooning

Finish the programming exercise from the second exercise sheet.

