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Convex Duality (4 Points + 8 Bonus)
Exercise 1 (4 Points). Compute the convex conjugates of the following functions:

1. f1 : R→ R ∪ {∞} where f1(x) =
√

1 + x2.

2. f2 : Rn → R ∪ {∞} where f2(x) = log (
∑n

i=1 e
xi) .

Don’t forget to specify the domains dom(f ∗1 ), dom(f ∗2 ).

Solution. 1. The conjugate is defined as

f ∗1 (y) = sup
x

xy −
√

1 + x2.

For |y| > 1, the supremum is +∞, since due to the subadditivity of
√
· we

have
xy −

√
1 + x2 ≥ xy −

√
1−
√
x2 = xy − |x| − 1,

and the choice x = tsign(y), t→ +∞ yields t(|y|−1)−1 with drives the lower
bound to infinity.

Now take |y| < 1. Setting the derivative of the function inside the supremum
to zero yields

y =
x√

1 + x2
⇒ x = ± y√

1− y2
.

Taking the choice x = y√
1−y2

(it leads to a larger value inside the supremum),

we have:

f ∗(y) = y
y√

1− y2
−

√
1 +

y2

1− y2
=

y2√
1− y2

−
√

1

1− y2
= −

√
1− y2,

with dom(f ∗) = [−1, 1].
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2. The conjugate is defined as:

f ∗2 (y) = sup
x∈Rn

n∑
i=1

xiyi − log

(
n∑
i=1

exp(xi)

)
.

We start by computing dom(f ∗2 ). Take some yi < 0, then set xi = −a and
xj = 0 for i 6= j. Then the conjugate simplifies to

sup
a∈R

− ayi − log (n− 1 + exp(−a)) ,

and one can see that for a→∞ this becomes +∞.

Next, take xi = a · sgn(yi), then we have for the conjugate:

sup
a∈R

a ‖y‖1 − log
(∑

exp(a · sgn(yi))
)

= sup
a∈R

a ‖y‖1 − a− log
(∑

exp(sgn(yi))
)

= sup
a∈R

a(‖y‖1 − 1)− log
(∑

exp(sgn(yi))
)
,

(1)

which becomes infinite if ‖y‖1 6= 1.

Setting the gradient of the function inside the supremum to zero yields

yi =
exp(xi)∑
j exp(xj)

⇔ xi = log yi
∑
j

exp(xj)

First, we conclude that dom(f ∗2 ) = {y ∈ Rn : yi ≥ 0, ‖y‖ = 1}. Plugging in xi
into the function inside the supremum yields

n∑
i=1

yi log yi
∑
j

exp(xj)− log

(
n∑
i=1

exp(log yi
∑
j

exp(xj))

)

=
n∑
i=1

yi log yi + yi log
∑
j

exp(xj)− log

(
n∑
i=1

yi
∑
j

exp(xj)

)
‖y‖1=1

=
n∑
i=1

yi log yi + log
∑
j

exp(xj)− log
∑
j

exp(xj)

=
∑
i

yi log yi.

(2)

Hence, f ∗(y) =
∑

i yi log yi + δ∆n(y).

Exercise 2 (4 Points). Compute the convex envelope f ∗∗ of the functions

1. f : R→ R, f(x) =


0 if x = 0,

λ if x 6= 0, |x| ≤ 1,

∞ otherwise.
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2. f : Rn×n → R, f(X) = rank(X) + δ{‖X‖spec ≤ 1}.

by taking the convex conjugate twice.

Solution. 1. The conjugate is given as

f ∗(y) = sup
|x|≤1

xy −

{
0, if x = 0,

λ, otherwise.

In the case x = 0 the supremum is 0, otherwise the supremum is attained at
|y| − λ. Hence, we have

f ∗(y) = max{0, |y| − λ}.

Now, for the biconjugate we have

f ∗∗(x) = sup
y
xy −max{0, |y| − λ} (3)

If |x| > 1 we can see that the supremum becomes +∞. Now assume |x| ≤ 1.
Assume |y| ≤ λ. Then we have f ∗∗(x) = sup|y|≤λ xy = λ|x|. For |y| > λ we
have that

xy − |y| − λ ≤ |x||y| − |y| − λ = |y| (|x| − 1)︸ ︷︷ ︸
≤0

−λ < λ|x|.

Hence, the supremum is always attained for |y| ≤ λ. To summarize, we have

f ∗∗(x) = λ|x|+ δ{|x| ≤ 1}.

2. For the proof, we will again make use of von Neumann’s trace inequality

tr(XTY ) ≤
n∑
i=1

σi(X)σi(Y ).

We start by computing the conjugate:

f ∗(Y ) = sup
‖X‖spec≤1

tr(XTY )− rank(X)

= sup
‖ΣX‖spec≤1

tr(VXΣXU
T
XUY ΣY V

T
Y )− rank(ΣX)

= sup
‖ΣX‖spec≤1

tr(ΣXΣY )− rank(ΣX)

= sup
‖X‖spec≤1

n∑
i=1

σi(X)σi(Y )− rank(X).

(4)

We had the freedom to choose UX = UY and VX = VY , since the spectral norm
and rank function are unitarily invariant and this choice is optimal due to von
Neumann’s trace inequality.

3



Now if rank(X) = r, we have f ∗(Y ) =
∑r

i=1 σi(Y )−r, and hence the conjugate
can be expressed as

f ∗(Y ) = max{0, σ1(Y )− 1, . . . ,
r∑
i=1

σi(Y )− r, . . . ,
n∑
i=1

σi(Y )− n} (5)

The largest term in the above maximum is the whose sums only consist of
positive terms, which yields:

f ∗(Y ) =
n∑
i=1

max{0, σi(Y )− 1}.

We continue with the biconjugate as above:

f ∗∗(X) = sup
Y

n∑
i=1

σi(Y )σi(X)−
n∑
i=1

max{0, σi(Y )− 1}

= sup
Y

n∑
i=1

σi(Y )σi(X)−
k(Y )∑
i=1

σi(Y ),

(6)

where k(Y ) is the number of singular values bigger than 1. Now if ‖X‖spec > 1
we see that the coefficient (σ1(X) − 1) for σ1(Y ) is positive, and hence the
supremum is +∞.
Next, let ‖X‖spec ≤ 1. Then if ‖Y ‖ ≤ 1 we have that f ∗(Y ) = 0 and the
supremum is achieved for σi(Y ) = 1, which evaluates to

∑
i σi(X) = ‖X‖nuc.

Finally, we prove that the supremum is always achieved for some Y with
‖Y ‖ ≤ 1. Indeed for Y with ‖Y ‖ > 1 we have the following bound:

n∑
i=1

σi(Y )σi(X)−
k(Y )∑
i=1

σi(Y )

=
n∑
i=1

σi(Y )σi(X)−
k(Y )∑
i=1

σi(Y ) +
n∑
i=1

σi(X)−
n∑
i=1

σi(X)

=

k(Y )∑
i=1

(σi(Y )− 1)(σi(X)− 1)︸ ︷︷ ︸
≤0

+
n∑

i=k(Y )+1

(σi(Y )− 1)σi(X)

︸ ︷︷ ︸
≤0

−k(Y ) +
n∑
i=1

σi(X)

<

n∑
i=1

σi(X).

(7)
To summarize the above, we have shown that

f ∗∗(X) = ‖X‖nuc + δ{‖X‖spec ≤ 1},

i.e., the convex envelope of the rank function on the spectral norm unit-ball is
the nuclear norm.
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Definition. The convex hull of an arbitrary set C ⊂ Rn is defined as

conv(C) =

{
p∑
i=1

λixi : xi ∈ C, λi ≥ 0,

p∑
i=1

λi = 1, p ≥ 0

}
. (8)

Exercise 3 (4 Points). Show that for a set C 6= ∅ in Rn, every point of conv(C) can
be expressed as a convex combination of n+1 points of C (not necessarily different).

Solution. Suppose we can write a point x ∈ conv(C) as a convex combination

x =

p∑
i=1

λixi, λi ≥ 0,

p∑
i=1

λi = 1, (9)

for some p > n+ 1. We will prove that we can write the same point x as a different
convex combination involving p− 1 points. Inductively, this will yield the claim.

Since p ≥ n + 2, we can use exercise 1.4 (Radon’s theorem) to partition our p
points into 2 nonempty sets {x1, . . . , xl}, {xl+1, . . . , xp} whose convex hulls share a
common point, i.e. ∃a ∈ Rl, b ∈ Rp−l :

l∑
i=1

aixi =

p∑
i=l+1

bixi, ai ≥ 0,
l∑

i=1

ai = 1, bi ≥ 0,

p∑
i=l+1

bi = 1. (10)

For notational convenience, we index the p− l entries bi from i = l+ 1, . . . , p. Now,
take the multiplier bj 6= 0 for which λj

bj
≤ λi

bi
. Solving (10) for xj yields

xj =

∑l
i=1 aixi −

∑p
i=l+1,i 6=j bixi

bj

To finish the proof, we substitute xj into (9) and show that the result is a valid
convex combination. The substitution yields

x =
∑
i 6=j

λixi + λj

∑l
i=1 aixi −

∑p
i=l+1,i 6=j bixi

bj

=
l∑

i=1

(
λi +

λjai
bj

)
xi +

p∑
i=l+1,i 6=j

(
λi −

λjbi
bj

)
xi.

(11)

It remains to show that this is indeed a convex combination, i.e., all the p − 1
multipliers are bigger than zero and sum up to one. The first l multipliers are
positive by construction. The last p− l − 1 multipliers are positive since

λi −
λjbi
bj
≥ λi −

λibi
bi

= 0.
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Finally, for the sum of all coefficients we have:

∑
i 6=j

λi +
l∑

i=1

λjai
bj
−

p∑
i=l+1,i 6=j

λjbi
bj

=
∑
i 6=j

λi +
λj
bj
− λj
bj

(1− bj) =
∑
i

λi = 1.

(12)
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Image Cartooning
Finish the programming exercise from the second exercise sheet.
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