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Proximal mapping (8 Points + 4 Bonus)
Exercise 1 (4 Points). Compute the proximity operator of the `2-norm, i.e.

prox‖·‖2 .

Exercise 2 (4 Points). Prove that the proximal operator of the nuclear norm is
the proximal operator of the `1-norm applied to the singular values of the input
argument.

Definition. A function g : Rn → R ∪ {∞} is called 1-homogeneous if

g(αx) = αg(x),

for all α ≥ 0.

Exercise 3 (4 Points). Let g : Rn → R ∪ {∞} be convex, closed, proper and
1-homogeneous. Show that the proximity operator of the sum ‖ · ‖2 + g is the
composition of the proximity operators of ‖ · ‖2 and g, i.e.

prox‖·‖2+g = prox‖·‖2 ◦ proxg.
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Multinomial Logistic Regression (16 Points)
In this exercise you are asked to train a linear model for a multiclass classification
task with Logistic regression. The idea is as follows: You are given a set of training
samples I = {1, . . . , N} that are represented by their feature vectors xi ∈ Rd, for
i ∈ I. Each training sample i is associated with a class label yi ∈ {1, . . . , C}. The
aim is to estimate a linear classifier parameterized by W ∗ ∈ Rd×C , b∗ ∈ RC so that
yi = argmax1≤j≤C x

>
i W

∗
j + b∗j for most training samples i. Once you have obtained

this “optimal” classifier the hope is, that you are able to classify new unseen and
unlabeled samples x ∈ Rd. In machine learning this is called generalization. For
this task you may query your trained model via the classifier rule

y = argmax1≤j≤C x
>W ∗

j + b∗j (1)

and y probably is the true class label of x if your model generalizes well.
In order to estimate the model we solve an optimization problem of the form

min
W∈Rd×C ,b∈RC

1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ1
2
‖b‖22, (2)

where

`(W, b, xi, yi) = − log

(
exp(〈Wyi , xi〉+ byi)∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(3)

is called the softmax loss. Note that the above problem is smooth and strongly
convex and can be solved with gradient descent. In practice however, it may happen,
that some features (i.e. components of the vector xi) do not contain any information
about the true class labels, i.e. components that are just noise. In order to filter
out the useless features we add the nonsmooth sparsity inducing `1-norm term on
W . So overall we would like to optimize

min
W∈Rd×C ,b∈RC

1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ1
2
‖b‖22 + λ2‖W‖1. (4)

You are asked to do the following:

• Download the toy data template from the homepage

• Implement a proximal gradient descent algorithm to optimize the above ob-
jective (Avoid for-loops)

• Make sure that your objective monotonically decreases. Plot the objective
values. Stop your code if the difference of two successive iterates is less than
10−12.

• In order to ensure that your derivative is computed correctly you may fist
optimize the fully differentiable model (2) with MATLABs fminunc with the
options ′GradObj ′, ′On ′ and ′DerivativeCheck ′, ′On ′.
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• Iteratively compute the test error in percent, i.e. how many test samples are
not classified correctly via the rule (1).

• Play around with different parameter settings for λ1, λ2. What do you observe?
Can you identify the useless features? Explain why the model generalizes
better to unseen test data if you add a sparsity inducing term.

• You may apply your code to the MNIST dataset http://yann.lecun.com/
exdb/mnist/ and see that your are now able to classify handwritten digits.
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