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Proximal mapping (8 Points + 4 Bonus)
Exercise 1 (4 Points). Compute the proximity operator of the `2-norm, i.e.

prox‖·‖2 .

Solution. From Moreau’s identity we know that for any convex, proper lsc f :
Rn → R ∪ {∞} and any x ∈ Rn

x = proxτf (v) + proxτf∗( v
τ
).

Further we know that the convex conjugate of any norm is the indicator function of
the unit ball wrt the dual norm. Since the dual norm of the `2-norm is again the
`2-norm, we have that:

‖ · ‖∗2 = δ{‖ · ‖2 ≤ 1}.

Overall we have
proxτ‖·‖2(x) = x− proxδ{‖·‖2≤1}(

v
τ
),

where

proxδ{‖·‖2≤1}(y) = proj{x:‖x‖2≤1}(y) =

{
y if ‖y‖2 ≤ 1
y
‖y‖2 otherwise.

Exercise 2 (4 Points). Prove that the proximal operator of the nuclear norm is
the proximal operator of the `1-norm applied to the singular values of the input
argument. Formally, let Y ∈ Rn×n and let Y = UΣV > be the singular value
decomposition of Y . Prove that

proxτ‖·‖nuc(Y ) = Udiag({(σi − τ)+})V >,

where diag({σi− τ)+}) := diag({max{0, σi− τ}}) = proxτ‖·‖1({σi}) is the shrinkage
(or soft thresholding) operator applied to the singular values σi of Y .
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Solution. Let Y ∈ Rn×n. We are interested in the solution of

argminX
1

2
‖X − Y ‖2F + τ‖X‖nuc. (1)

Since the above problem is strictly convex there exists a unique solution X̂. The
optimality condition of the problem is given as

0 ∈ X̂ − Y + ∂‖ · ‖nuc(X̂). (2)

where ∂‖ · ‖nuc(X) is the subdifferential of the nuclear norm at X characterized on
exercise sheet 3. Our aim is to show that X̂ := Udiag({(σi − τ)+})V > meets the
optimality condition. To this end we decompose V = [V1 V2], U = [U1 U2] and

Σ =

[
Σ1 0
0 Σ2

]
so that

Y = U1Σ1V
>
1 + U2Σ2V

>
2 ,

where Σ1 contains all singular values σi > τ and Σ2 all singular values σi ≤ τ . We
may then write X̂ as

X̂ = Udiag({(σi − τ)+})V > = U1 (Σ1 − τI)︸ ︷︷ ︸
σi>0

V >1 + U2 diag({0})︸ ︷︷ ︸
σi=0

V >2 .

We will now show that X̂ meets (2): Y − X̂ is given as

Y − X̂ = τ(U1V
>
1 + U2

1
τ
Σ2V

>
2 ).

By construction ‖ 1
τ
Σ2‖spec ≤ 1. And therefore and due to sheet 3

Y − X̂ ∈ τ∂‖ · ‖nuc(X̂)

Definition. A function g : Rn → R ∪ {∞} is called 1-homogeneous if

g(αx) = αg(x),

for all α ≥ 0.

Exercise 3 (4 Points). Let g : Rn → R ∪ {∞} be convex, closed, proper and
1-homogeneous. Show that the proximity operator of the sum ‖ · ‖2 + g is the
composition of the proximity operators of ‖ · ‖2 and g, i.e.

prox‖·‖2+g = prox‖·‖2 ◦ proxg.

Solution. Let y ∈ dom(g). We have the following optimality conditions for prox‖·‖2+g(y),
prox‖·‖2◦g(y) and proxg(y):

0 ∈ prox‖·‖2+g(y)− y + ∂(‖ · ‖2 + g)(prox‖·‖2+g(y)) (3)

0 ∈ prox‖·‖2(proxg(y))− proxg(y) + ∂(‖ · ‖2)(prox‖·‖2(proxg(y))) (4)

0 ∈ proxg(y)− y + ∂g(proxg(y)) (5)
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Adding the last two inclusions yields:

0 ∈ prox‖·‖2(proxg(y))− y + ∂g(proxg(y)) + ∂(‖ · ‖2)(prox‖·‖2(proxg(y))). (6)

Assume that it holds for all x ∈ Rn

∂g(prox‖·‖2(x)) ⊇ ∂g(x). (7)

Then for x := proxg(y), and due to (6) and the sum rule of the subdifferential
∂(‖ · ‖2 + g) ⊇ ∂‖ · ‖2 + ∂g we have that

0 ∈ prox‖·‖2(proxg(y))− y + ∂g(prox‖·‖2(proxg(y))) + ∂(‖ · ‖2)(prox‖·‖2(proxg(y)))

⊂ prox‖·‖2(proxg(y))− y + ∂(g + ‖ · ‖2)(prox‖·‖2(proxg(y))).

This shows that prox‖·‖2(proxg(y)) satisfies (3) and therefore prox‖·‖2(proxg(y)) =
prox‖·‖2+g(y).

It remains to prove the sufficient condition (7). Clearly, for any x, y ∈ Rn with
x ⊥ y we have that ‖x + y‖2 ≥ ‖y‖2, since x ⊥ y implies 〈x, y〉 = 0. Then we have
that

min
x

1

2
‖x− y‖22 + ‖x‖2 = min

λ,z⊥y

1

2
‖z + λy − y‖22 + ‖z + λy‖2

= min
λ

1

2
‖λy − y‖22 + ‖λy‖2

= min
λ≥0

1

2
(λ− 1)2‖y‖22 + |λ|‖y‖2.

The constraint in the last equality can be seen as follows: Suppose λ < 0. Then
increasing it to zero decreases both summands of the objective. Therefore, we have
that prox‖·‖2(y) = λy for some λ ≥ 0 and clearly prox‖·‖2(y) = 0 ⇐⇒ y = 0.
Since g is 1-homogeneous, its subdifferential is scaling invariant, meaning that p ∈
∂g(y) =⇒ p ∈ ∂g(λy) for λ > 0, we have that (for y 6= 0) there exists λ > 0 so
that,

∂g(y) ⊆ ∂g(λy) = ∂g(prox‖·‖2(y)).

It remains to prove the scaling invariance of the subdifferential for 1-homogeneous
g. Let λ > 0: Via the substitution z′ = 1

λ
z we obtain that

p ∈ ∂g(y) =⇒ 〈p, z − y〉+ g(y) ≤ g(z), ∀z ∈ dom(g)

=⇒ 〈p, λz − λy〉+ λg(y) ≤ λg(z), ∀z ∈ dom(g)

=⇒ 〈p, λz − λy〉+ g(λy) ≤ g(λz), ∀z ∈ dom(g)

=⇒ 〈p, z′ − λy〉+ g(λy) ≤ g(z′), ∀z′ ∈ dom(g)

=⇒ p ∈ ∂g(λy).
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Multinomial Logistic Regression (16 Points)
Exercise 4 (16 Points). In this exercise you are asked to train a linear model for
a multiclass classification task with Logistic regression. The idea is as follows: You
are given a set of training samples I = {1, . . . , N} that are represented by their
feature vectors xi ∈ Rd, for i ∈ I. Each training sample i is associated with a class
label yi ∈ {1, . . . , C}. The aim is to estimate a linear classifier parameterized by
W ∗ ∈ Rd×C , b∗ ∈ RC so that yi = argmax1≤j≤C x

>
i W

∗
j + b∗j for most training samples

i. Once you have obtained this “optimal” classifier the hope is, that you are able to
classify new unseen and unlabeled samples x ∈ Rd. In machine learning this is called
generalization. For this task you may query your trained model via the classifier
rule

y = argmax1≤j≤C x
>W ∗

j + b∗j (8)

and y probably is the true class label of x if your model generalizes well.
In order to estimate the model we solve an optimization problem of the form

min
W∈Rd×C ,b∈RC

1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ1
2
‖b‖22, (9)

where

`(W, b, xi, yi) = − log

(
exp(〈Wyi , xi〉+ byi)∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(10)

is called the softmax loss. Note that the above problem is smooth and strongly
convex and can be solved with gradient descent. In practice however, it may happen,
that some features (i.e. components of the vector xi) do not contain any information
about the true class labels, i.e. components that are just noise. In order to filter
out the useless features we add the nonsmooth sparsity inducing `1-norm term on
W . So overall we would like to optimize

min
W∈Rd×C ,b∈RC

1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ1
2
‖b‖22 + λ2‖W‖1. (11)

You are asked to do the following:

• Download the toy data template from the homepage

• Implement a proximal gradient descent algorithm to optimize the above ob-
jective (Avoid for-loops)

• Make sure that your objective monotonically decreases. Plot the objective
values. Stop your code if the difference of two successive iterates is less than
10−12.
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• In order to ensure that your derivative is computed correctly you may first
optimize the fully differentiable model (9) with MATLABs fminunc with the
options ′GradObj ′, ′On ′ and ′DerivativeCheck ′, ′On ′.

• Iteratively compute the test error in percent, i.e. how many test samples are
not classified correctly via the rule (8).

• Play around with different parameter settings for λ1, λ2. What do you observe?
Can you identify the useless features? Explain why the model generalizes
better to unseen test data if you add a sparsity inducing term.

• You may apply your code to the MNIST dataset http://yann.lecun.com/
exdb/mnist/ and see that your are now able to classify handwritten digits.

Solution. We apply the proximal gradient descent scheme to our objective (11).
To this end we need compute the partial derivatives ∂F (W,b)

∂Wlk
and ∂F (W,b)

∂bk
of the dif-

ferentiable part of the objective

F (W, b) =
1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ1
2
‖b‖22.

First we observe, that

∂F (W, b)

∂Wlk

=
1

N

N∑
i=1

∂`(W, b, xi, yi)

∂Wlk

+ λ1Wlk

and
∂F (W, b)

∂bk
=

1

N

N∑
i=1

∂`(W, b, xi, yi)

∂bk
+ λ1bk.

For some class 1 ≤ k ≤ C define

hk(W, b) =
exp(〈Wyi , xi〉+ byi)∑C
j=1 exp(〈Wj, xi〉+ bj)

and

1{yi = k} =

{
1 if yi = k

0 otherwise.

Via the one-dimensional chain rule and the quotient rule the partial derivatives of
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the individual loss terms are given as:

∂`(W, b, xi, yi)

∂Wlk

=− 1

hyi(W, b)
·
1{yi = k} · exp(〈Wyi , xi〉+ byi) · xil ·

(∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

= +
1

hyi(W, b)
· exp(〈Wyi , xi〉+ byi) · exp(〈Wk, xi〉+ bk) · xil(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

=− 1

hyi(W, b)
· 1{yi = k} · xil · hyi(W, b) +

1

hyi(W, b)
· hyi(W, b) · hk(W, b) · xil

=(hk(W, b)− 1{yi = k}) · xil.

Similarly we obtain for the derivative wrt. bk:

∂`(W, b, xi, yi)

∂bk

=− 1

hyi(W, b)
·
1{yi = k} · exp(〈Wyi , xi〉+ byi) ·

(∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

= +
1

hyi(W, b)
· exp(〈Wyi , xi〉+ byi) · exp(〈Wk, xi〉+ bk)(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

=hk(W, b)− 1{yi = k}.
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