Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu Exercises: E. Laude, T. Möllenhoff

Summer Semester 2017

Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 6

Room: 02.09.023

Monday, 19.06.2017, 12:15-14:00

Submission deadline: Wednesday, 14.06.2017, Room 02.09.023

Gradient descent

(4 Points + 4 Bonus)

Exercise 1 (4 Points). Let $Q \in \mathbb{R}^{n \times n}$ be a positive definite symmetric matrix. Prove the following inequality for any vector $x \in \mathbb{R}^n$

$$\frac{(x^{\top}x)^2}{(x^{\top}Qx)(x^{\top}Q^{-1}x)} \ge \frac{4\lambda_n\lambda_1}{(\lambda_n + \lambda_1)^2},$$

where λ_n and λ_1 are, respectively, the largest and smallest eigenvalues of Q.

Exercise 2 (4 Points). Let $Q \in \mathbb{R}^{n \times n}$ be symmetric positive definite, and $b \in \mathbb{R}^n$. As in the previous exercise, denote the eigenvalues of Q as $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$. Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto \frac{1}{2}x^\top Qx - b^\top x$ and show gradient descent with exact line search has the following convergence property:

$$\|x^{k+1} - x^*\|_Q^2 \le \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 \|x^k - x^*\|_Q^2$$

where $x^* \in \mathbb{R}^n$ denotes the global minimizer of f.

Hint: use the inequality from exercise 1.