Lecture: T. Wu
Exercises: E. Laude, T. Möllenhoff
Summer Semester 2017

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 7

Room: 02.09.023
Monday, 26.06.2017, 12:15-14:00
Submission deadline: Wednesday, 21.06.2017, Room 02.09.023

Majorization minimization and Convex Analysis Revisited

($6+4$ Points)
Exercise 1 (2 Points). Consider the smooth approximation of the absolute value function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sqrt{x^{2}+\varepsilon}$ for some $\varepsilon>0$. Show that

$$
\widehat{f}\left(x ; x_{k}\right)=f\left(x_{k}\right)+\frac{1}{2 f\left(x_{k}\right)}\left[x^{2}-x_{k}^{2}\right]
$$

is a majorizing surrogate at $x_{k} \in \mathbb{R}$, i.e., prove that

- $\widehat{f}\left(x_{k} ; x_{k}\right)=f\left(x_{k}\right)$,
- $\widehat{f}\left(x ; x_{k}\right) \geq f(x), \forall x \in \mathbb{R}$.

Exercise 2 (2 Points). Let Δx_{n} and Δx be the normalized and unnormalized steepest descent directions at x, for the norm $\|\cdot\|$. Prove the following identities.

- $\nabla f(x)^{\top} \Delta x_{n}=-\|\nabla f(x)\|_{*}$
- $\nabla f(x)^{\top} \Delta_{x}=-\|\nabla f(x)\|_{*}^{2}$
- $\Delta x=\operatorname{argmin}_{v}\left(\nabla f(x)^{\top} v+\frac{1}{2}\|v\|^{2}\right)$

Exercise 3 (2 Points). Steepest descent method in ℓ_{∞}-norm. Explain how to find a steepest descent direction in the ℓ_{∞}-norm, and give a simple interpretation.

Exercise 4 (4 Points). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$. Let conv f be the largest function majorized by f, meaning that (conv $f)(x) \leq f(x)$ for all $x \in \mathbb{R}^{n}$. Show the following identity

$$
(\operatorname{conv} f)(x)=\inf \left\{\sum_{i=1}^{n+1} \lambda_{i} f\left(x_{i}\right): \sum_{i=1}^{n+1} \lambda_{i} x_{i}=x, \lambda_{i} \geq 0, \sum_{i=1}^{n+1} \lambda_{i}=1\right\}
$$

Hint: Apply Caratheodory's Theorem to the epigraph of f.

Input image

Inpainting mask

Minimizer of (1)

Programming: Image inpainting

(8 Points)
Exercise 5. In this exercise the goal is to fill regions specified by a mask in an image by through minimizing the energy

$$
\begin{equation*}
E(u)=\frac{\lambda}{2}\|M(u-f)\|^{2}+\|D u\|_{\varepsilon} . \tag{1}
\end{equation*}
$$

Here, $f \in \mathbb{R}^{n_{x} \cdot n_{y} \cdot n_{c}}$ denotes the input image, $M: \mathbb{R}^{n_{x} \cdot n_{y} \cdot n_{c}} \rightarrow \mathbb{R}^{n_{x} \cdot n_{y} \cdot n_{c}}$ denotes a diagonal matrix consisting of zero/one values specifying the inpainting mask and $D: \mathbb{R}^{n_{x} \cdot n_{y} \cdot n_{c}} \rightarrow \mathbb{R}^{2 \cdot n_{x} \cdot n_{y} \cdot n_{c}}$ is the usual discrete gradient operator from the first exercise sheet. $\lambda>0$ is a data fidelity parameter determining the smoothness of the solution. As in the second programming exercise, $\|x\|_{\varepsilon}=\sum_{i} \sqrt{x^{2}+\varepsilon}$ denotes the smoothed ℓ_{1} norm. Your tasks are the following:

1. Find a minimizer of (1) using gradient descent.
2. Minimize (1) using a majorization minimization approach. For this, use the result from exercise 1 to majorize the term $\|\cdot\|_{\varepsilon}$ at the current solution u^{k} with a quadratic function. Since the upper bound is quadratic, it can be efficiently minimized by solving a linear system. For that, use the backslash operator in MATLAB.
3. Compare the gradient descent approach to the MM scheme. Which one converges faster?

The deadline for handing in the programming solution is June 28th, 2017, 23:59pm.

