Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu Exercises: E. Laude, T. Möllenhoff Summer Semester 2017 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 7

Room: 02.09.023 Monday, 26.06.2017, 12:15-14:00 Submission deadline: Wednesday, 21.06.2017, Room 02.09.023

Exercise 1 (2 Points). Consider the smooth approximation of the absolute value function $f : \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{x^2 + \varepsilon}$ for some $\varepsilon > 0$. Show that

$$\widehat{f}(x; x_k) = f(x_k) + \frac{1}{2f(x_k)} \left[x^2 - x_k^2 \right],$$

is a majorizing surrogate at $x_k \in \mathbb{R}$, i.e., prove that

- $\widehat{f}(x_k; x_k) = f(x_k),$
- $\widehat{f}(x; x_k) \ge f(x), \, \forall x \in \mathbb{R}.$

Exercise 2 (2 Points). Let $\|\cdot\|$ be any norm on \mathbb{R}^n and let $\|\cdot\|_*$ denote its dual norm. Let

$$\Delta x_n := \operatorname{argmin}_{v: \|v\|=1} \nabla f(x)^\top v = \operatorname{argmin}_{v: \|v\| \le 1} \nabla f(x)^\top v,$$

and

$$\Delta x = \|\nabla f(x)\|_* \Delta x_n,$$

be the normalized and unnormalized steepest descent directions at x. Prove the following identities.

- $\nabla f(x)^{\top} \Delta x_n = -\|\nabla f(x)\|_*$
- $\nabla f(x)^{\top} \Delta x = \| \nabla f(x) \|_*^2$
- $\Delta x = \operatorname{argmin}_{v}(\nabla f(x)^{\top}v + \frac{1}{2}||v||^{2})$

Exercise 3 (2 Points). Steepest descent method in ℓ_{∞} -norm. Explain how to find a steepest descent direction in the ℓ_{∞} -norm, and give a simple interpretation.

Exercise 4 (4 Points). Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Let conv f be the largest convex function majorized by f, meaning that $(\operatorname{conv} f)(x) \leq f(x)$ for all $x \in \mathbb{R}^n$. Show the following identity

$$(\text{conv } f)(x) = \inf\left\{\sum_{i=1}^{n+1} \lambda_i f(x_i) : \sum_{i=1}^{n+1} \lambda_i x_i = x, \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1\right\}.$$

Hint: Apply Caratheodory's Theorem to the epigraph of f.

Input image

Inpainting mask

Minimizer of (1)

Programming: Image inpainting (8 Points)

Exercise 5. In this exercise the goal is to fill regions specified by a mask in an image by through minimizing the energy

$$E(u) = \frac{\lambda}{2} \|M(u - f)\|^2 + \|Du\|_{\varepsilon}.$$
 (1)

Here, $f \in \mathbb{R}^{n_x \cdot n_y \cdot n_c}$ denotes the input image, $M : \mathbb{R}^{n_x \cdot n_y \cdot n_c} \to \mathbb{R}^{n_x \cdot n_y \cdot n_c}$ denotes a diagonal matrix consisting of zero/one values specifying the inpainting mask and $D : \mathbb{R}^{n_x \cdot n_y \cdot n_c} \to \mathbb{R}^{2 \cdot n_x \cdot n_y \cdot n_c}$ is the usual discrete gradient operator from the first exercise sheet. $\lambda > 0$ is a data fidelity parameter determining the smoothness of the solution. As in the second programming exercise, $\|x\|_{\varepsilon} = \sum_i \sqrt{x^2 + \varepsilon}$ denotes the smoothed ℓ_1 norm. Your tasks are the following:

- 1. Find a minimizer of (1) using gradient descent.
- 2. Minimize (1) using a majorization minimization approach. For this, use the result from exercise 1 to majorize the term $\|\cdot\|_{\varepsilon}$ at the current solution u^k with a quadratic function. Since the upper bound is quadratic, it can be efficiently minimized by solving a linear system. For that, use the backslash operator in MATLAB.
- 3. Compare the gradient descent approach to the MM scheme. Which one converges faster?

The deadline for handing in the programming solution is June 28th, 2017, 23:59pm.