Convex Optimization for Machine Learning and Computer Vision

Lecture: T. Wu Exercises: E. Laude, T. Möllenhoff Summer Semester 2017 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 7

Room: 02.09.023 Monday, 26.06.2017, 12:15-14:00 Submission deadline: Wednesday, 21.06.2017, Room 02.09.023

Exercise 1 (2 Points). Consider the smooth approximation of the absolute value function $f : \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{x^2 + \varepsilon}$ for some $\varepsilon > 0$. Show that

$$\widehat{f}(x;x_k) = f(x_k) + \frac{1}{2f(x_k)} \left[x^2 - x_k^2 \right],$$

is a majorizing surrogate at $x_k \in \mathbb{R}$, i.e., prove that

•
$$\widehat{f}(x_k; x_k) = f(x_k)$$

•
$$f(x; x_k) \ge f(x), \forall x \in \mathbb{R}.$$

Solution. The first part is trivial, since for $x = x_k$ we immediately have $\hat{f}(x; x_k) = f(x_k)$ by definition.

For the second part, we linearize the concave function $\sqrt{1+t}$ at some point $t_0 \in \mathbb{R}_{\geq 0}$ to get the estimate:

$$\sqrt{t+\varepsilon} \le \sqrt{t_0+\varepsilon} + \frac{1}{2\sqrt{t_0+\varepsilon}}(t-t_0).$$

Using this estimate with $t = x^2$ and $t_0 = x_k^2$ yields the desired inequality

$$f(x) = \sqrt{x^2 + \varepsilon} \le \sqrt{x_k^2 + \varepsilon} + \frac{1}{2\sqrt{x_k^2 + \varepsilon}} (x^2 - x_k^2) = \widehat{f}(x; x_k).$$

Exercise 2 (2 Points). Let $\|\cdot\|$ be any norm on \mathbb{R}^n and let $\|\cdot\|_*$ denote its dual norm. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and twice continuously differentiable. Let $x \in \mathbb{R}^n$. Let

$$\Delta x_n := \operatorname{argmin}_{v: \|v\|=1} \nabla f(x)^{\top} v = \operatorname{argmin}_{v: \|v\| \le 1} \nabla f(x)^{\top} v,$$

and

$$\Delta x = \|\nabla f(x)\|_* \Delta x_n,$$

be the normalized and unnormalized steepest descent directions at x. Prove the following identities.

- $\nabla f(x)^{\top} \Delta x_n = -\|\nabla f(x)\|_*$
- $\nabla f(x)^{\top} \Delta x = \| \nabla f(x) \|_*^2$
- $\Delta x = \operatorname{argmin}_{v} \nabla f(x)^{\top} v + \frac{1}{2} \|v\|^{2}$

Solution. For the first part we observe, that Δx_n is determined via a convex conjugate of a unit ball of a norm:

$$\min_{v:\|v\|\leq 1} \nabla f(x)^{\top} v = -\max_{v} -\nabla f(x)^{\top} v - \delta\{\|v\| \leq 1\} = -\|\cdot\|_{*}(-\nabla f(x)).$$

Since Δx_n minimizes the above equation we obtain the desired result.

For the second part we may use the above result and observe that,

$$\nabla f(x)^{\top} \Delta x = \nabla f(x)^{\top} (\|\nabla f(x)\|_* \Delta x_n) = \nabla f(x)^{\top} \Delta x_n \|\nabla f(x)\|_* = -\|\nabla f(x)\|_*^2$$

For the last part we first observe that the convex conjugate of the squared norm is the squared dual norm $(\frac{1}{2} \| \cdot \|^2)^* = (\frac{1}{2} \| \cdot \|^2_*)$: To this end let $y \in \mathbb{R}^n$ and observe that

$$y^{\top}x - \frac{1}{2}||x||^2 \le ||x|| ||y||_* - \frac{1}{2}||x||^2 \le \frac{1}{2}||y||_*^2,$$

since the above is concave and quadratic in ||x|| and it is maximized for $||x|| = ||y||_*$. On the other hand, observe that for x chosen such that $||x|| = ||y||_*$ and $y^{\top}x = ||y||_*||x||$ (note that such an x exists) we have

$$y^{\top}x - \frac{1}{2}||x||^2 \ge \frac{1}{2}||y||_*^2.$$

This yields the desired result. Again, we may understand the minimization problem in terms of a convex conjugate:

$$\begin{split} \min_{v} \nabla f(x)^{\top} v &+ \frac{1}{2} \|v\|^{2} = -\max_{v} - \nabla f(x)^{\top} v - \frac{1}{2} \|v\|^{2} \\ &= -\frac{1}{2} \|\cdot\|_{*}^{2} (-\nabla f(x)) \\ &= \frac{1}{2} \nabla f(x)^{\top} \Delta x. \end{split}$$

Since

$$\nabla f(x)^{\top} \Delta x + \frac{1}{2} \|\nabla f(x)\|_{*}^{2} \underbrace{\|\Delta x_{n}\|^{2}}_{=1} = \frac{1}{2} \nabla f(x)^{\top} \Delta x,$$

 Δx minimizes the above expression.

Exercise 3 (2 Points). Steepest descent method in ℓ_{∞} -norm. Explain how to find a steepest descent direction in the ℓ_{∞} -norm, and give a simple interpretation.

Solution. Since $||x||_{\infty} = \max_i |x_i|$, clearly, the minimum of the objective

$$\Delta x_n := \operatorname{argmin}_{v: \|v\|_{\infty} \le 1} \nabla f(x)^\top v,$$

is attained at a vertex of the ℓ_{∞} -norm unit ball (we minimize a linear cost function over a polytope), i.e. Δx_n has the form,

$$(\Delta x_n)_i = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

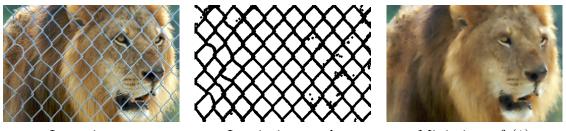
for some j. Here, j is picked as the index corresponding to the entry of $(\nabla f(x))_j$ which has minimal value. Since the descent direction is zero for all but one component, this means, that our descent method decreases the objective function coordinatewise: All components of the current iterate x^k are kept fixed except for one that is decreased.

Exercise 4 (4 Points). Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Let conv f be the largest convex function majorized by f, meaning that $(\operatorname{conv} f)(x) \leq f(x)$ for all $x \in \mathbb{R}^n$. Show the following identity

$$(\text{conv } f)(x) = \inf\left\{\sum_{i=1}^{n+1} \lambda_i f(x_i) : \sum_{i=1}^{n+1} \lambda_i x_i = x, \lambda_i \ge 0, \sum_{i=1}^{n+1} \lambda_i = 1\right\}.$$

Hint: Apply Caratheodory's Theorem to the epigraph of f.

Solution. We apply Caratheodory's Theorem to epi $f \,\subset\, \mathbb{R}^{n+1}$: every point of conv epi f is a convex combination of at most n+2 points of epi f. Actually, at most n+1 points x_i at a time are needed in determining the values of conv f, since a point $(\bar{x}, \bar{\alpha})$ of conv epi f not representable by fewer than n+2 points of epi f would lie in the interior of some n+1-simplex S in conv epi f. The vertical line through $(\bar{x}, \bar{\alpha})$ would meet the boundary of S in a point $(\bar{x}, \tilde{\alpha})$ with $\bar{\alpha} > \tilde{\alpha}$, and such a boundary point is representable by n+1 of the points in question. Thus, $(\operatorname{conv} f)(x)$ is the infimum of all numbers α such that there exist n+1 points (x_i, α_i) and scalars $\lambda_i \geq 0$, with $\sum_{i=1}^{n+1} \lambda_i(x_i, \alpha_i), \sum_{i=1}^{n+1} \lambda_i = 1$. This description translates to the formula claimed.



Input image

Inpainting mask

Minimizer of (1)

Programming: Image inpainting (8 Points)

Exercise 5. In this exercise the goal is to fill regions specified by a mask in an image by through minimizing the energy

$$E(u) = \frac{\lambda}{2} \|M(u - f)\|^2 + \|Du\|_{\varepsilon}.$$
 (1)

Here, $f \in \mathbb{R}^{n_x \cdot n_y \cdot n_c}$ denotes the input image, $M : \mathbb{R}^{n_x \cdot n_y \cdot n_c} \to \mathbb{R}^{n_x \cdot n_y \cdot n_c}$ denotes a diagonal matrix consisting of zero/one values specifying the inpainting mask and $D : \mathbb{R}^{n_x \cdot n_y \cdot n_c} \to \mathbb{R}^{2 \cdot n_x \cdot n_y \cdot n_c}$ is the usual discrete gradient operator from the first exercise sheet. $\lambda > 0$ is a data fidelity parameter determining the smoothness of the solution. As in the second programming exercise, $\|x\|_{\varepsilon} = \sum_i \sqrt{x^2 + \varepsilon}$ denotes the smoothed ℓ_1 norm. Your tasks are the following:

- 1. Find a minimizer of (1) using gradient descent.
- 2. Minimize (1) using a majorization minimization approach. For this, use the result from exercise 1 to majorize the term $\|\cdot\|_{\varepsilon}$ at the current solution u^k with a quadratic function. Since the upper bound is quadratic, it can be efficiently minimized by solving a linear system. For that, use the backslash operator in MATLAB.
- 3. Compare the gradient descent approach to the MM scheme. Which one converges faster?

The deadline for handing in the programming solution is June 28th, 2017, 23:59pm.