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Majorization minimization
and Convex Analysis Revisited (6 + 4 Points)
Exercise 1 (2 Points). Consider the smooth approximation of the absolute value
function f : R→ R, x 7→

√
x2 + ε for some ε > 0. Show that

f̂(x;xk) = f(xk) +
1

2f(xk)

[
x2 − x2k

]
,

is a majorizing surrogate at xk ∈ R, i.e., prove that

• f̂(xk;xk) = f(xk),

• f̂(x;xk) ≥ f(x), ∀x ∈ R.

Solution. The first part is trivial, since for x = xk we immediately have f̂(x;xk) =
f(xk) by definition.

For the second part, we linearize the concave function
√

1 + t at some point
t0 ∈ R≥0 to get the estimate:

√
t+ ε ≤

√
t0 + ε+

1

2
√
t0 + ε

(t− t0).

Using this estimate with t = x2 and t0 = x2k yields the desired inequality

f(x) =
√
x2 + ε ≤

√
x2k + ε+

1

2
√
x2k + ε

(x2 − x2k) = f̂(x;xk).

Exercise 2 (2 Points). Let ‖ · ‖ be any norm on Rn and let ‖ · ‖∗ denote its dual
norm. Let f : Rn → R be convex and twice continuously differentiable. Let x ∈ Rn.
Let

∆xn := argminv:‖v‖=1∇f(x)>v = argminv:‖v‖≤1∇f(x)>v,

and
∆x = ‖∇f(x)‖∗∆xn,

be the normalized and unnormalized steepest descent directions at x. Prove the
following identities.
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• ∇f(x)>∆xn = −‖∇f(x)‖∗

• ∇f(x)>∆x = −‖∇f(x)‖2∗

• ∆x = argminv∇f(x)>v + 1
2
‖v‖2

Solution. For the first part we observe, that ∆xn is determined via a convex con-
jugate of a unit ball of a norm:

min
v:‖v‖≤1

∇f(x)>v = −max
v
−∇f(x)>v − δ{‖v‖ ≤ 1} = −‖ · ‖∗(−∇f(x)).

Since ∆xn minimizes the above equation we obtain the desired result.
For the second part we may use the above result and observe that,

∇f(x)>∆x = ∇f(x)>(‖∇f(x)‖∗∆xn) = ∇f(x)>∆xn‖∇f(x)‖∗ = −‖∇f(x)‖2∗.

For the last part we first observe that the convex conjugate of the squared norm
is the squared dual norm (1

2
‖ · ‖2)∗ = (1

2
‖ · ‖2∗): To this end let y ∈ Rn and observe

that
y>x− 1

2
‖x‖2 ≤ ‖x‖‖y‖∗ −

1

2
‖x‖2 ≤ 1

2
‖y‖2∗,

since the above is concave and quadratic in ‖x‖ and it is maximized for ‖x‖ = ‖y‖∗.
On the other hand, observe that for x chosen such that ‖x‖ = ‖y‖∗ and y>x =
‖y‖∗‖x‖ (note that such an x exists) we have

y>x− 1

2
‖x‖2 ≥ 1

2
‖y‖2∗.

This yields the desired result. Again, we may understand the minimization problem
in terms of a convex conjugate:

min
v
∇f(x)>v +

1

2
‖v‖2 = −max

v
−∇f(x)>v − 1

2
‖v‖2

= −1

2
‖ · ‖2∗(−∇f(x))

=
1

2
∇f(x)>∆x.

Since
∇f(x)>∆x+

1

2
‖∇f(x)‖2∗ ‖∆xn‖2︸ ︷︷ ︸

=1

=
1

2
∇f(x)>∆x,

∆x minimizes the above expression.

Exercise 3 (2 Points). Steepest descent method in `∞-norm. Explain how to find
a steepest descent direction in the `∞-norm, and give a simple interpretation.
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Solution. Since ‖x‖∞ = maxi |xi|, clearly, the minimum of the objective

∆xn := argminv:‖v‖∞≤1∇f(x)>v,

is attained at a vertex of the `∞-norm unit ball (we minimize a linear cost function
over a polytope), i.e. ∆xn has the form,

(∆xn)i =

{
1 if i = j

0 otherwise,

for some j. Here, j is picked as the index corresponding to the entry of the gradient
vector ∇f(x) that has minimal value:

j = argmini(∇f(x))i.

Since the descent direction is zero for all but one component, this means, that our
descent method decreases the objective function coordinate-wise: All components
of the current iterate xk are kept fixed except for one that is decreased.

Exercise 4 (4 Points). Let f : Rn → R ∪ {∞}. Let conv f be the largest convex
function majorized by f , meaning that (conv f)(x) ≤ f(x) for all x ∈ Rn. Show the
following identity

(conv f)(x) = inf

{
n+1∑
i=1

λif(xi) :
n+1∑
i=1

λixi = x, λi ≥ 0,
n+1∑
i=1

λi = 1

}
.

Hint: Apply Caratheodory’s Theorem to the epigraph of f .

Solution. We apply Caratheodory’s Theorem to epi f ⊂ Rn+1: every point of
conv epi f is a convex combination of at most n + 2 points of epi f . Actually, at
most n+ 1 points xi at a time are needed in determining the values of conv f , since
a point (x̄, ᾱ) of conv epi f not representable by fewer than n + 2 points of epi f
would lie in the interior of some n + 1-simplex S in conv epi f . The vertical line
through (x̄, ᾱ) would meet the boundary of S in a point (x̄, α̃) with ᾱ > α̃, and
such a boundary point is representable by n + 1 of the points in question. Thus,
(conv f)(x) is the infimum of all numbers α such that there exist n+1 points (xi, αi)
and scalars λi ≥ 0, with

∑n+1
i=1 λi(xi, αi),

∑n+1
i=1 λi = 1. This description translates

to the formula claimed.
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Input image Inpainting mask Minimizer of (1)

Programming: Image inpainting (8 Points)
Exercise 5. In this exercise the goal is to fill regions specified by a mask in an
image by through minimizing the energy

E(u) =
λ

2
‖M(u− f)‖2 + ‖Du‖ε . (1)

Here, f ∈ Rnx·ny ·nc denotes the input image, M : Rnx·ny ·nc → Rnx·ny ·nc denotes a
diagonal matrix consisting of zero/one values specifying the inpainting mask and
D : Rnx·ny ·nc → R2·nx·ny ·nc is the usual discrete gradient operator from the first
exercise sheet. λ > 0 is a data fidelity parameter determining the smoothness of the
solution. As in the second programming exercise, ‖x‖ε =

∑
i

√
x2 + ε denotes the

smoothed `1 norm. Your tasks are the following:

1. Find a minimizer of (1) using gradient descent.

2. Minimize (1) using a majorization minimization approach. For this, use the
result from exercise 1 to majorize the term ‖·‖ε at the current solution uk with
a quadratic function. Since the upper bound is quadratic, it can be efficiently
minimized by solving a linear system. For that, use the backslash operator in
MATLAB.

3. Compare the gradient descent approach to the MM scheme. Which one con-
verges faster?

The deadline for handing in the programming solution is June 28th, 2017, 23:59pm.
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