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Majorization minimization
and Convex Analysis Revisited (6 + 4 Points)

Exercise 1 (2 Points). Consider the smooth approximation of the absolute value
function f: R — R, z — /22 + ¢ for some ¢ > 0. Show that
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fsan) = flan) + (e

is a majorizing surrogate at xy € R, i.e., prove that
o f(wwzp) = flaw),
o A(x;xk) > f(z), Vz € R.

~

Solution. The first part is trivial, since for = x; we immediately have f(x;zy) =
f(zx) by definition.

For the second part, we linearize the concave function /1 4+t at some point
to € R>¢ to get the estimate:

Vit+e<ty+e+ (t —to).
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Using this estimate with ¢ = 22 and t, = 7 yields the desired inequality
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Exercise 2 (2 Points). Let || - || be any norm on R™ and let || - ||, denote its dual
norm. Let f: R"™ — R be convex and twice continuously differentiable. Let x € R™.
Let

Az, = argmin, ,_; Vi) v= argmin,, < Vf(x) v,

and
Az = ||Vf(z)||.Az,,

be the normalized and unnormalized steepest descent directions at x. Prove the
following identities.



o Vi(x) Az, = —||V f(2)|.
o Vf(z) Az = —|Vf(z)|?
o Az = argmin, Vf(x) v + %“UH2

Solution. For the first part we observe, that Ax,, is determined via a convex con-
jugate of a unit ball of a norm:

min Vf(z)'v = —max -V f(z) v - o{|v]| <1} = || - [l (= V f(2)).

vilvf|<1

Since Ax, minimizes the above equation we obtain the desired result.
For the second part we may use the above result and observe that,

V@) Ax = V(@) (IVf(@)Azy) = V(@) Aza|[VF (@) = =V f ()2

For the last part we first observe that the convex conjugate of the squared norm
is the squared dual norm (3| - [|)* = ([ - |[?): To this end let y € R™ and observe
that
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since the above is concave and quadratic in ||z|| and it is maximized for ||z|| = ||y]|.-
On the other hand, observe that for x chosen such that ||z|| = |y||. and y'z =
lly||«||z|| (note that such an x exists) we have

lyll3.
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This yields the desired result. Again, we may understand the minimization problem
in terms of a convex conjugate:

1 1
min () v+ 5[0 = —max =9 (z) v = 3o

1 2
= =5l =V f(2))
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Since . .
Vi) Az + §\|Vf($)|!3 Az, | = §Vf(x)TAfv,
———
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Ax minimizes the above expression.

Exercise 3 (2 Points). Steepest descent method in ¢,-norm. Explain how to find
a steepest descent direction in the /,-norm, and give a simple interpretation.



Solution. Since [|z||, = max; |z;|, clearly, the minimum of the objective
Az, 1= argmin,, | < Vi)',

is attained at a vertex of the {o-norm unit ball (we minimize a linear cost function
over a polytope), i.e. Ax,, has the form,

(Aiﬁn)i:{l ifi=7

0 otherwise,

for some j. Here, j is picked as the index corresponding to the entry of the gradient
vector V f(x) that has minimal value:

J = argmin,(V f(z));.

Since the descent direction is zero for all but one component, this means, that our
descent method decreases the objective function coordinate-wise: All components
of the current iterate z* are kept fixed except for one that is decreased.

Exercise 4 (4 Points). Let f : R™ — R U {oo}. Let conv f be the largest convex
function majorized by f, meaning that (conv f)(z) < f(x) for all € R™. Show the
following identity

n+1 n+1 n+1
(conv f)(z) = inf {Z Aif(x;) Z)‘imi =z, \ > O’Z)‘i = 1} .
i=1 i=1 i=1

Hint: Apply Caratheodory’s Theorem to the epigraph of f.

Solution. We apply Caratheodory’s Theorem to epi f C R""!: every point of
conv epi f is a convex combination of at most n + 2 points of epi f. Actually, at
most n + 1 points z; at a time are needed in determining the values of conv f, since
a point (Z,@) of conv epi f not representable by fewer than n + 2 points of epi f
would lie in the interior of some n + 1-simplex S in conv epi f. The vertical line
through (z, @) would meet the boundary of S in a point (z,&) with @ > &, and
such a boundary point is representable by n 4+ 1 of the points in question. Thus,
(conv f)(x) is the infimum of all numbers a such that there exist n+1 points (z;, ;)
and scalars \; > 0, with Z?jll i, ), Z?:ll A; = 1. This description translates
to the formula claimed.



Input image Inpainting mask Minimizer of (1)

Programming: Image inpainting (8 Points)

Exercise 5. In this exercise the goal is to fill regions specified by a mask in an
image by through minimizing the energy

B(w) = 5 |M(u~ I + | Dull. 0

Here, f € R" ™" denotes the input image, M : R" ™" — R™ ™™ denotes a
diagonal matrix consisting of zero/one values specifying the inpainting mask and
D : Rr=myme —y R27Memyne jg the usual discrete gradient operator from the first
exercise sheet. A > 0 is a data fidelity parameter determining the smoothness of the
solution. As in the second programming exercise, ||z||. = >, V&2 + ¢ denotes the
smoothed ¢; norm. Your tasks are the following:

1. Find a minimizer of (1) using gradient descent.

2. Minimize (1) using a majorization minimization approach. For this, use the
result from exercise 1 to majorize the term ||-||_ at the current solution u* with
a quadratic function. Since the upper bound is quadratic, it can be efficiently
minimized by solving a linear system. For that, use the backslash operator in
MATLAB.

3. Compare the gradient descent approach to the MM scheme. Which one con-
verges faster?

The deadline for handing in the programming solution is June 28th, 2017, 23:59pm.



