

Machine Learning Basics

Occlusions

Background clutter

Representation

How can we learn to perform image classification?

Unsupervised learning

- No label or target class
- Find out properties of the structure of the data
- Clustering (k-means, PCA)

Supervised learning

Unsupervised learning

Supervised learning

Unsupervised learning

Supervised learning

 Labels or target classes

Supervised learning

DOG

How can we learn to perform image classification?

Experience

Test data

Unsupervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

Supervised learning

Reinforcement learning

How can we learn to perform image classification?

A simple classifier

distance

What is the performance on training data for NN classifier?

What classifier is more likely to perform best on test data?

Courtesy of Stanford course cs231n

Hyperparameters

Distance (L1, L2)

k (number of neighbors)

These parameters are problem dependent.

How do we choose these hyperparameters?

Cross validation

Split the training data into N folds

Cross validation

Find your hyperparameters

- Supervised learning
- Find a linear model that explains a target ${f y}$ given the inputs ${f X}$

Training

Testing

A linear model is expressed in the form

A linear model is expressed in the form

Minimizing

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Objective function
Energy
Loss

Optimization

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \boldsymbol{\theta} - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

Optimization

$$\mathbf{v} = (\mathbf{v}\mathbf{\rho} - \mathbf{v})^T (\mathbf{v}\mathbf{\rho} - \mathbf{v})^T$$

$$J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\boldsymbol{\theta}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})$$

$$\frac{\partial \boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2\mathbf{A}^T \boldsymbol{\theta}$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{A}^T \mathbf{\theta}$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} = 0$$

Optimization

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} = 0$$

$$oldsymbol{ heta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$
Inputs: Outside temperature, number of people...

Output:

Temperature of the building

Is this the best estimate?

Mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Maximum Likelihood

 $p_{data}(\mathbf{x})$ True underlying distribution

 $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ Parametric family of distributions

Controlled by a parameter

 A method of estimating the parameters of a statistical model given observations,

$$p_{model}(\mathbb{X};oldsymbol{ heta})$$

Observations from $p_{data}(\mathbf{x})$

• A method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations given the parameters.

$$m{ heta}_{ML} = rg \max_{m{ heta}} p_{model}(\mathbb{X}; m{ heta})$$
 $m{ heta}_{ML} = rg \max_{m{ heta}} \prod_{i=1}^m p_{model}(\mathbf{x}_i; m{ heta})$

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \prod_{i=1} p_{model}(\mathbf{x}_i; \boldsymbol{\theta})$$

$$\boldsymbol{\theta}_{ML} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{l} \log p_{model}(\mathbf{x}_i; \boldsymbol{\theta})$$

Spoiler: Related to softmax loss

$$m{ heta}_{ML} = rg\max_{m{ heta}} p(\mathbf{y}|\mathbf{X}, m{ heta})$$
 i.i.d. =independent and identically distributed

$$\boldsymbol{\theta}_{ML} = \arg\max_{\theta} \sum_{i=1} \log p(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

Gaussian or Normal distribution
$$p(y_i|\mathbf{x}_i, \boldsymbol{\theta}) \qquad \text{distribution}$$
 Assuming $y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 $x \sim \mathcal{N}(\mu, \sigma^2)$

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta})$$

Assuming
$$y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \qquad x \sim \mathcal{N}(\mu, \sigma^2)$$

Assuming
$$y_i = (2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(y_i - \mathbf{x}_i \boldsymbol{\theta})^2}$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x - \mu)^2} \qquad x \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(y_i-\mathbf{x}_i\boldsymbol{\theta})^2}$$

Assuming
$$y_i = \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2) = \mathbf{x}_i \boldsymbol{\theta} + \mathcal{N}(0, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \qquad x \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(y_i-\mathbf{x}_i\boldsymbol{\theta})^2}$$

$$\boldsymbol{\theta}_{ML} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(y_i|\mathbf{x}_i, \boldsymbol{\theta})$$

$$\log((2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(y_i-\mathbf{x}_i\boldsymbol{\theta})^2})$$
 Matrix notation
$$\log((2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\boldsymbol{\theta})^T(\mathbf{y}-\mathbf{X}\boldsymbol{\theta})})$$

$$-\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

$$-\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$\frac{\partial}{\partial \boldsymbol{\theta}}$$
 How can we find the estimate of theta?

$$-\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Can you derive the estimate of sigma?

Regularization and MAP

$$x = [1, 2, 1] \longrightarrow$$
Input = 3 features

$$\theta_1 = [1.5, 0, 0] \longrightarrow \text{Ignores 2 features}$$

$$\theta_2 = [0.25, 0.5, 0.25] \longrightarrow \text{Takes information}$$
 from all features

Loss
$$J(oldsymbol{ heta}) = (\mathbf{y} - \mathbf{X}oldsymbol{ heta})^T (\mathbf{y} - \mathbf{X}oldsymbol{ heta}) + \lambda R(oldsymbol{ heta})$$

L2 regularization
$$\boldsymbol{\theta}^T \boldsymbol{\theta}$$

$$\boldsymbol{\theta}_1^T \boldsymbol{\theta}_1 = 1.5 * 1.5 = 2.25$$

$$\boldsymbol{\theta}_2^T \boldsymbol{\theta}_2 = 0.25^2 + 0.5^2 + 0.25^2 = 0.375$$

$$x = [1, 2, 1]$$
 $\theta_1 = [1.5, 0, 0]$ $\theta_2 = [0.25, 0.5, 0.25]$

Loss
$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

L2 regularization

L1 regularization

Max norm regularization

Dropout

Can you find the relationship between this loss and the Maximum a Posteriori (MAP) estimate?

What is the goal of regularization?

What happens to the training error?

Credits: University of Washington

Overfitting and underfitting

What is lambda for each of the cases?

Credits: Deep Learning. Goodfellow et al.

Overfitting and underfitting

Credits: Deep Learning. Goodfellow et al.

Live demo

Next lectures

Thursday 4th May in the Chemistry Building!

Topic: optimization

First exercise on Friday 5th of May here!