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Reinforcement learning

Agents Environment
interaction 

Machine learning

Unsupervised learning Supervised learning



• How can we learn to perform image classification?

Task

Image 
classification

Experience

Data
Performance 

measure

Accuracy

Machine learning



Nearest Neighbor

Courtesy of Stanford course cs231n

What is the performance on training data for NN classifier?

What classifier is more likely to perform best on test data?



Cross validation

train test

train testvalidation

20%

Find your hyperparameters



1 bias

Linear prediction
• A linear model is expressed in the form



Minimizing
Objective function

Energy
Loss

Linear regression



Output: 
Temperature of 

the building
Inputs: Outside 
temperature, 

number of 
people…

Optimization



Maximum Likelihood Estimate

True underlying distribution

Parametric family of distributions

Controlled by a parameter



Back to linear regression

How can we 
find the 
estimate of 
theta?



Back to linear regression

Can you derive the 
estimate of sigma?



Back to linear regression



Back to linear regression

Chain rule



Back to linear regression



Back to linear regression



Overfitting and underfitting

Credits: Deep Learning. Goodfellow et al.

Training 
error too 

big

Generalization 
gap is too big



Regularization

L2 regularization

Loss

L1 regularization

Max norm regularization

Dropout

Can you find the 
relationship between 

this loss and the 
Maximum a Posteriori 

(MAP) estimate?



Maximum a Posteriori (MAP)
• We want to have a point estimate (as opposed to ML)
• Find the point of maximum posterior probability

Note the difference
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Maximum a Posteriori (MAP)
• We want to have a point estimate (as opposed to ML)
• Find the point of maximum posterior probability

Prior of the 
model

Generation EASYRecognition HARD



Maximum a Posteriori (MAP)
• We want to have a point estimate (as opposed to ML)
• Find the point of maximum posterior probability

Maximum Likelihood Term



Maximum a Posteriori (MAP)
• We want to have a point estimate (as opposed to ML)
• Find the point of maximum posterior probability



Regularization

Loss

Prior of the 
model

Maximum Likelihood Estimate



Loss cheat sheet
• Softmax loss

• Multi-class SVM loss or Hinge loss

Scores or predictions



Optimization



Back to linear regression



Optimization

• Complex function that cannot be derived in closed 
form

• Fast way to find a minimum
• Scales to large datasets



Gradient descent



Following the slope

Optimum

Initialization
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Optimum

Initialization



Following the slope

Optimum

Initialization

Follow the 
slope of the 
DERIVATIVE



Gradient steps
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

Learning rate
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Gradient steps
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

LARGE Learning rate



Convergence

Optimum

Initialization

What is the 
gradient when 
we reach this 
point?

Not guaranteed 
to reach the 

optimum



Numerical gradient

• Approximate
• Slow evaluation



Analytical gradient
• Exact and fast 

Analytical 
gradient

Remember Linear 
Regression



Gradient descent for least squares

Convex, always converges to the same solution



Non-linear least squares
• Not necessarily convex



Stochastic Gradient Descent
• If we have      training samples we need to compute 

the gradient for all of them which is 

• Gradient is an expectation, and so it can be 
approximated with a small number of samples

Minibatch

Epoch = complete pass through all the data



Convergence



Stochastic gradient descent

Gradient

LossModel

SGD

Ignore the sum for 
convenience 



Momentum update
• Designed to accelerate training
• Define a new term called velocity

• The velocity accumulates gradients

SGD                                                                               Polyack 1964



Momentum update

Image: Goodfellow et al.

Step will be largest when 
a sequence of gradients 

all point to the same 
direction



Momentum update
• Can it overcome local minima?



Nesterov’s momentum
• Look-ahead momentum

SGD                                                               Sutskever 2013, Nesterov 1983



Nesterov’s momentum
• Look-ahead momentum

SGD                                                               Sutskever 2013, Nesterov 1983



Convergence



More parameters…

Can we relax the dependence on the hyperparameters?  



AdaGrad update
• Adapt the learning rate of all model parameters

Diagonal matrix with 
entries that are the 

square of the gradient

Element-wise 
multiplication

Duchi 2011



AdaGrad update
• Adapt the learning rate of all model parameters

Accumulating gradients



AdaGrad update
• Adapt the learning rate of all model parameters

Small constant for 
numerical stability

Learning rate



AdaGrad update
• Theory: more progress in regions where the function 

is more flat

• Practice: for most deep learning models, 
accumulating gradients from the beginning results in 
excessive decrease in the effective learning rate



Convergence



RMSProp and Adadelta
• Improvements to AdaGrad to avoid the problem of 

diminishing learning rate

• Decaying factor applied to the accumulation of 
gradients

• Old gradients are slowly forgotten

Zeiler, 2012. Hinton, 2012



Convergence



Adam
• Optimizer of choice for most neural networks

• Adam = adaptive moments

• It can be seen as an RMSProp with momentum

Kingma and Ba 2014



AdaGrad Adam

Second order moment



Adam

Second order moment

Gradient

Unbias the moments

Update step

First order moment

We can consider it as 
momentum 



Adam

• Both moments are initialized to zero, which means 
that specially at the beginning they have a tendency 
to converge to zero

Unbias the moments

Go-to optimizer



So far
• Classic optimizers: SGM, Momentum, Nesterov’s

momentum

• Adaptive learning rates: AdaGrad, Adadelta, RMSProp
and Adam

Can we get rid of the learning rate?



Importance of the learning rate



Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND 

DERIVATIVE



Newton’s method
• Approximate our function by a second-order Taylor 

series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative 
(curvature)



Newton’s method
• SGD (green)

• Newton’s method exploits 
the curvature to take a 
more direct route

Image from Wikipedia



Newton’s method
• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!



Newton’s method
• Differentiate and equate to zero

Update step

Parameters 
of a network 

(millions)

Number of 
elements in 
the Hessian

Computational 
complexity of 

inversion per iteration

Only small networks can be trained with this method



Newton’s method

Can you apply Newton’s 
method for linear 

regression? What do you 
get as a result?



BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS



Which, what and when?
• Standard: Adam

• Fall-back option: SGD with momentum

• L-BFGS if you can do full batch updates (forget 
applying it to minibatches!!)



Backprop



The importance of gradients
• All optimization schemes are based on computing 

gradients

• We have seen how to compute gradients analytically 
but what if our function is too complex?

• Break down gradient computation Backpropagation

Rumelhart 1986



Computational graphs

mult

LOSS

sum



Computational graphs
• These graphs can be huge!



An example: forward pass

mult

sum

Initialization
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An example: the chain rule
• Each node is only interested in its own inputs and 

outputs

mult

sum
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An example: the chain rule
• Each node is only interested in its own inputs and 

outputs

mult



The flow of the gradients
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The flow of the gradients

• Many many many many of these nodes form a 
neural network

• Each one has its own work to do

NEURONS

FORWARD AND BACKWARD PASS



Next lecture
• First exercise starts tomorrow!

• Next Thursday 11th of May: more on backprop, 
introduction to neural networks!


