ता

Lecture 2 recap

Slides

- We make the slides available on this website
http://vision.in.tum.de/teaching/ss2017/dl4cv/coursematerial
- Password: dl4cvTUM
- Please do not distribute!

Machine learning

Unsupervised learning

Supervised learning

Reinforcement learning

Machine learning

- How can we learn to perform image classification?

Task
classification

Experience
Performance measure

Accuracy

Data

Nearest Neighbor

What is the performance on training data for NN classifier?
What classifier is more likely to perform best on test data?

Cross validation

Find your hyperparameters

Linear prediction

- A linear model is expressed in the form

$$
\hat{y}_{i}=\sum_{j=1}^{d} x_{i j} \theta_{j}=x_{1 /} \sqrt{\theta_{1}}+x_{i 2} \theta_{2}+\cdots+x_{i d} \theta_{d}
$$

Linear regression

Minimizing

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

Objective function Energy
Loss

Optimization

$$
\begin{aligned}
& \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}-2 \mathbf{X}^{T} \mathbf{y}=0 \\
& \qquad \begin{array}{cc}
\boldsymbol{\theta}= & \left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& \begin{array}{c}
\text { Inputs: Outside } \\
\text { temperature, } \\
\text { number of } \\
\text { people... }
\end{array} \\
\text { Output: }
\end{array} \\
&
\end{aligned}
$$

Maximum Likelihood Estimate

$p_{\text {data }}(\mathbf{x}) \quad$ True underlying distribution

$p_{\text {model }}(\mathbf{x} ; \boldsymbol{\theta}) \quad$ Parametric family of distributions
Controlled by a parameter

Back to linear regression

$$
\begin{gathered}
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) \\
-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta}) \\
\qquad \begin{array}{l}
\text { 古 } \frac{\partial}{\partial \boldsymbol{\theta}} \\
\begin{array}{l}
\text { How can we } \\
\text { find the } \\
\text { estimate of }
\end{array} \\
\boldsymbol{\theta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
\text { theta? }
\end{array}
\end{gathered}
$$

Back to linear regression

$$
-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})
$$

Can you derive the estimate of sigma?

Back to linear regression

$$
\begin{gathered}
\frac{\partial}{\partial \sigma}(-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right) \underbrace{\left.-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})\right)}_{\downarrow}=0 \\
-\frac{1}{\sigma^{3}}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})
\end{gathered}
$$

Back to linear regression

$$
\frac{\partial}{\partial \sigma}(\underbrace{-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)}-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta}))=0
$$

Chain rule $\quad F(x)=f(g(x))$

$$
\frac{\partial}{\partial x} F(x)=\frac{\partial}{\partial g(x)} f(g(x)) \frac{\partial}{\partial x} g(x)
$$

Back to linear regression

$$
\frac{\partial}{\partial \sigma}\left(-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})\right)=0
$$

Back to linear regression

$$
\begin{gathered}
\frac{\partial}{\partial \sigma}\left(-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})\right)=0 \\
=-\frac{n}{\sigma}-\frac{1}{\sigma^{3}}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})=0 \\
\sigma^{2}=\frac{1}{n}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})
\end{gathered}
$$

Overfitting and underfitting

Regularization

$\operatorname{Loss} J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})+\lambda R(\boldsymbol{\theta})$

L2 regularization
L1 regularization
Max norm regularization
Dropout

Can you find the relationship between this loss and the
Maximum a Posteriori (MAP) estimate?

Maximum a Posteriori (MAP)

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$
\theta_{M A P}=\arg \max _{\theta} p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})
$$

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\theta} p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

Maximum a Posteriori (MAP)

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$
\theta_{M A P}=\arg \max _{\theta} p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})=\arg \max _{\theta} p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) p(\boldsymbol{\theta})
$$

Bayes rule $p(\boldsymbol{\theta} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{y})}$

Maximum a Posteriori (MAP)

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$
\theta_{M A P}=\arg \max _{\theta} p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})=\arg \max _{\theta} p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) p(\boldsymbol{\theta})
$$

Bayes rule $p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})=\frac{p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) p(\boldsymbol{\theta})}{p(\mathbf{y} \mid \mathbf{X})}$

Maximum a Posteriori (MAP)

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$
\theta_{M A P}=\arg \max _{\theta} p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})=\arg \max _{\theta} p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) p(\boldsymbol{\theta})
$$

Maximum a Posteriori (MAP)

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$
\theta_{M A P}=\arg \max _{\theta} p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})=\arg \max _{\theta} p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) p(\boldsymbol{\theta})
$$

Maximum Likelihood Term

Maximum a Posteriori (MAP)

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$
\begin{gathered}
\theta_{M A P}=\arg \max _{\theta} p(\boldsymbol{\theta} \mid \mathbf{X}, \mathbf{y})=\arg \max _{\theta} p(\mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}) p(\boldsymbol{\theta}) \\
p(\boldsymbol{\theta})=\mathcal{N}\left(\boldsymbol{\theta} ; 0, \frac{1}{\lambda} \mathbf{I}^{2}\right) \longrightarrow \lambda \boldsymbol{\theta}^{T} \boldsymbol{\theta}
\end{gathered}
$$

Regularization

$$
\text { Loss } J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})+\lambda R(\boldsymbol{\theta})
$$

Prior of the model

Maximum Likelihood Estimate

Loss cheat sheet

- Softmax loss

$$
L_{i}=\frac{e^{s_{i}}}{\Gamma} \quad s_{i}=\mathbf{x}_{i} \boldsymbol{\theta}
$$

- Multi-class SVM Loss or Hinge loss

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{i}-s_{y_{i}}+1\right)
$$

Optimization

Back to linear regression

$$
\begin{gathered}
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) \\
\downarrow \frac{\partial}{\partial \boldsymbol{\theta}} \\
\boldsymbol{\theta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{gathered}
$$

Optimization

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\theta} p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

- Complex function that cannot be derived in closed form
- Fast way to find a minimum
- Scales to large datasets

Gradient descent

Following the slope

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Following the slope

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Following the slope

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Gradient steps

- From derivative to gradient

$$
\frac{d f(x)}{d x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x})
$$

Direction of greatest increase of the function

- Gradient steps in direction of negative gradient
$\nabla_{\mathrm{x}} f(\mathrm{x}) \mathrm{T}_{\mathrm{x}}$

$$
\mathbf{x}^{\prime}=\mathbf{x}-\epsilon \nabla_{\mathbf{x}} f(\mathbf{x})
$$

Learning rate

Gradient steps

- From derivative to gradient

$$
\frac{d f(x)}{d x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x})
$$

Direction of greatest increase of the function

- Gradient steps in direction of negative gradient

$$
\mathbf{x}^{\prime}=\mathbf{x}-\epsilon \nabla_{\mathbf{x}} f(\mathbf{x})
$$

SMALL Learning rate

Gradient steps

- From derivative to gradient

$$
\frac{d f(x)}{d x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x})
$$

Direction of greatest increase of the function

- Gradient steps in direction of negative gradient

$$
\mathbf{x}^{\prime}=\mathbf{x}-\epsilon \nabla_{\mathbf{x}} f(\mathbf{x})
$$

LARGE Learning rate

Convergence

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Numerical gradient

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Approximate
- Slow evaluation

Analytical gradient

- Exact and fast

Remember Linear

$$
f(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

$$
f(\boldsymbol{\theta})=\frac{1}{n}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y})
$$

Analytical $\longrightarrow 2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}-2 \mathbf{X}^{T} \mathbf{y}$ gradient

Gradient descent for least squares

$$
\begin{array}{r}
f(\boldsymbol{\theta})=\frac{1}{n}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y}) \\
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon 2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}-2 \mathbf{X}^{T} \mathbf{y}
\end{array}
$$

Convex, always converges to the same solution

Non-linear least squares

- Not necessarily convex

Stochastic Gradient Descent

- If we have m training samples we need to compute the gradient for all of them which is $\mathcal{O}(m)$
- Gradient is an expectation, and so it can be approximated with a small number of samples

$$
\text { Minibatch } \quad \mathbb{B}=\left\{x^{1}, \cdots, x^{m^{\prime}}\right\}
$$

Epoch = complete pass through all the data

Convergence

Stochastic gradient descent

Gradient

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \frac{1}{\frac{1}{m} \sum_{i} \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)}
$$

Ignore the sum for
SGD $\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$
convenience ©

Momentum update

- Designed to accelerate training
- Define a new term called velocity \mathbf{v}

$$
\begin{aligned}
& \mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
\end{aligned}
$$

- The velocity accumulates gradients

SGD $\quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$

Momentum update

$$
\mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
$$

Step will be largest when a sequence of gradients all point to the same direction

Image: Goodfellow et al.

Momentum update

- Can it overcome local minima?

$$
\mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \quad \alpha=\{0.5,0.9,0.99\}
$$

Nesterov's momentum

- Look-ahead momentum

$$
\begin{aligned}
& \widetilde{\boldsymbol{\theta}}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k} \\
& \mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
\end{aligned}
$$

SGD $\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$

Nesterov's momentum

- Look-ahead momentum

$$
\begin{aligned}
& \widetilde{\boldsymbol{\theta}}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k} \\
& \mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
\end{aligned}
$$

SGD $\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$

Convergence

More parameters...

$$
\begin{gathered}
\mathbf{v}_{k+1}=\widehat{\alpha}_{k}-\epsilon \widehat{\epsilon}_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\overparen{\epsilon \bigvee}_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)
\end{gathered}
$$

Can we relax the dependence on the hyperparameters?

AdaGrad update

- Adapt the learning rate of all model parameters

$$
\begin{aligned}
& \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g}
\end{aligned}
$$

Element-wise multiplication

Diagonal matrix with entries that are the square of the gradient

AdaGrad update

- Adapt the learning rate of all model parameters

$$
\begin{aligned}
& \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g}
\end{aligned}
$$

Accumulating gradients

AdaGrad update

- Adapt the learning rate of all model parameters

$$
\begin{aligned}
& \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g} \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\frac{\epsilon}{\delta+\sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}
\end{aligned}
$$

Learning rate

Small constant for numerical stability

AdaGrad update

- Theory: more progress in regions where the function is more flat

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\frac{\epsilon}{\delta+\sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}
$$

- Practice: for most deep learning models, accumulating gradients from the beginning results in excessive decrease in the effective learning rate

Convergence

RMSProp and Adadelta

- Improvements to AdaGrad to avoid the problem of diminishing learning rate
- Decaying factor applied to the accumulation of gradients
- Old gradients are slowly forgotten

Convergence

Adam

- Optimizer of choice for most neural networks
- Adam = adaptive moments
- It can be seen as an RMSProp with momentum

Kingma and Ba 2014

AdaGrad

$$
\mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)
$$

$$
\mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)
$$

Second order moment

$$
\mathbf{r}_{k+1}=\rho_{2} \mathbf{r}_{k}+\left(1-\rho_{2}\right) \mathbf{g} \odot \mathbf{g}
$$

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\frac{\epsilon}{\delta+\sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}
$$

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \frac{\widehat{\mathbf{s}}}{\delta+\sqrt{\hat{\mathbf{r}}_{k+1}}}
$$

Gradient $\quad \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$ momentum

First order moment

$$
\mathbf{s}_{k+1}=\rho_{1} \mathbf{s}_{k}+\left(1-\rho_{1}\right) \mathbf{g}
$$

Second order moment

$$
\mathbf{r}_{k+1}=\rho_{2} \mathbf{r}_{k}+\left(1-\rho_{2}\right) \mathbf{g} \odot \mathbf{g}
$$

Unbias the moments

$$
\hat{\mathbf{s}}_{k+1}=\frac{\mathbf{s}_{k+1}}{1-\rho_{1}} \quad \hat{\mathbf{r}}_{k+1}=\frac{\mathbf{r}_{k+1}}{1-\rho_{2}}
$$

Update step

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \frac{\hat{\mathbf{s}}}{\delta+\sqrt{\hat{\mathbf{r}}_{k+1}}} \odot \mathbf{g}
$$

Adam

Unbias the moments

$$
\hat{\mathbf{s}}_{k+1}=\frac{\mathbf{s}_{k+1}}{1-\rho_{1}} \quad \hat{\mathbf{r}}_{k+1}=\frac{\mathbf{r}_{k+1}}{1-\rho_{2}}
$$

- Both moments are initialized to zero, which means that specially at the beginning they have a tendency to converge to zero

$$
\rho_{1}=0.9 \quad \rho_{2}=0.999
$$

Go-to optimizer

So far

- Classic optimizers: SGM, Momentum, Nesterov's momentum
- Adaptive learning rates: AdaGrad, Adadelta, RMSProp and Adam

Can we get rid of the learning rate?

Importance of the learning rate

Jacobian and Hessian

- Derivative
- Gradient
- Jacobian
- Hessian
$\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R} \quad \frac{d f(x)}{d x}$
$\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}$
$\nabla_{\mathbf{x}} f(\mathbf{x}) \quad\left(\frac{d f(x)}{d x_{1}}, \frac{d f(x)}{d x_{2}}\right)$
$\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \mathbf{J} \in \mathbb{R}^{n \times m}$
$\mathrm{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}$

Newton's method

- Approximate our function by a second-order Taylor series expansion

$$
L(\boldsymbol{\theta}) \approx L\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \underset{\not}{\mathbf{H}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

First derivative
Second derivative (curvature)

Newton's method

- SGD (green)
- Newton's method exploits the curvature to take a more direct route

Newton's method

- Differentiate and equate to zero

We got rid of the learning rate!

$$
\text { SGD } \quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)
$$

Newton's method

- Differentiate and equate to zero

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \quad \text { Update step }
$$

Parameters of a network (millions) k

Number of elements in the Hessian
k^{2}

Computational complexity of inversion per iteration
$\mathcal{O}\left(k^{3}\right)$

Only small networks can be trained with this method

Newton's method

$$
J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})
$$

Can you apply Newton's method for linear
regression? What do you get as a result?

BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})
$$

- BFGS $\mathcal{O}\left(n^{2}\right)$
- Limited memory: L-BFGS $\mathcal{O}(n)$

Which, what and when?

- Standard: Adam
- Fall-back option: SGD with momentum
- L-BFGS if you can do full batch updates (forget applying it to minibatches!!)

Backprop

The importance of gradients

- All optimization schemes are based on computing gradients

$$
\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})
$$

- We have seen how to compute gradients analytically but what if our function is too complex?
- Break down gradient computation

Backpropagation

Computational graphs

$$
J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{x} \boldsymbol{\theta})+\lambda R(\boldsymbol{\theta})
$$

Computational graphs

- These graphs can be huge!

Another view of GoogleNet's architecture.

An example: forward pass

$f=x * y+z \quad$ Initialization $\quad x=2, y=-5, z=3$

An example: backward pass

(acce

An example: chain rule

$$
\begin{aligned}
& f=x * y+z \\
& \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\end{aligned}
$$

An example: chain rule $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial d} \frac{\partial d}{\partial x}$

$$
f=x * y+z
$$

An example: the chain rule

An example: the chain rule

- Each node is only interested in its own inputs and outputs

An example: the chain rule

- Each node is only interested in its own inputs and outputs

The flow of the gradients

Activation function

The flow of the gradients

Activation function

The flow of the gradients

- Many many many many of these nodes form a neural network

NEURONS

- Each one has its own work to do

FORWARD AND BACKWARD PASS

Next lecture

- First exercise starts tomorrow!
- Next Thursday 11 ${ }^{\text {th }}$ of May: more on backprop, introduction to neural networks!

