

Lecture 2 recap

• We make the slides available on this website

http://vision.in.tum.de/teaching/ss2017/dl4cv/coursematerial

• Password: dl4cvTUM

• Please do not distribute!

Machine learning

Unsupervised learning

Supervised learning

Reinforcement learning

Machine learning

• How can we learn to perform image classification?

Nearest Neighbor

What is the performance on training data for NN classifier? What classifier is more likely to perform best on test data?

Courtesy of Stanford course cs231n

Cross validation

Linear prediction

• A linear model is expressed in the form

Linear regression

Optimization

 $\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} = 0$ $\boldsymbol{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ Output: Temperature of Inputs: Outside the building temperature, number of people...

Maximum Likelihood Estimate

Back to linear regression

$$\boldsymbol{\theta}_{ML} = \arg\max_{\boldsymbol{\theta}} p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

$$-\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{x}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{x}\boldsymbol{\theta})$$

$$\downarrow \frac{\partial}{\partial \boldsymbol{\theta}} \qquad \text{How can we find the estimate of the ta?}$$

Back to linear regression

 $-\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{x}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{x}\boldsymbol{\theta})$

Can you derive the estimate of sigma?

Back to linear regression

$$\frac{\partial}{\partial \sigma} \left(-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{x}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{x}\boldsymbol{\theta}) \right) = 0$$

$$-\frac{1}{\sigma^3} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Back to linear regression

$$\frac{\partial}{\partial \sigma} \left(-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{x}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{x}\boldsymbol{\theta}) \right) = 0$$

Chain rule F(x) = f(g(x))

$$\frac{\partial}{\partial x}F(x) = \frac{\partial}{\partial g(x)}f(g(x))\frac{\partial}{\partial x}g(x)$$

Back to linear regression

Back to linear regression

$$\frac{\partial}{\partial\sigma} \left(-\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \right) = 0$$

$$= -\frac{n}{\sigma} - \frac{1}{\sigma^3} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) = 0$$

$$\sigma^2 = \frac{1}{n} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Overfitting and underfitting

0 Optimal Capacity

Capacity

Credits: Deep Learning. Goodfellow et al.

Regularization

Loss
$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

L2 regularization

L1 regularization

Max norm regularization

Dropout

Can you find the relationship between this loss and the Maximum a Posteriori (MAP) estimate?

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$\theta_{MAP} = \arg\max_{\theta} p(\theta | \mathbf{X}, \mathbf{y})$$

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta})$$

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$\theta_{MAP} = \arg \max_{\theta} p(\theta | \mathbf{X}, \mathbf{y}) = \arg \max_{\theta} p(\mathbf{y} | \theta, \mathbf{X}) p(\theta)$$

Bayes rule $p(\theta | \mathbf{y}) = \frac{p(\mathbf{y} | \theta) p(\theta)}{p(\mathbf{y})}$

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$\theta_{MAP} = \arg \max_{\theta} p(\theta | \mathbf{X}, \mathbf{y}) = \arg \max_{\theta} p(\mathbf{y} | \theta, \mathbf{X}) p(\theta)$$

Bayes rule $p(\theta | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} | \theta, \mathbf{X}) p(\theta)}{p(\mathbf{y} | \mathbf{X})}$

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$\partial_{MAP} = \arg \max_{\theta} p(\theta | \mathbf{X}, \mathbf{y}) = \arg \max_{\theta} p(\mathbf{y} | \theta, \mathbf{X}) p(\theta)$$

Prior of the model
Recognition HARD Generation EASY

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$\theta_{MAP} = \arg \max_{\theta} p(\theta | \mathbf{X}, \mathbf{y}) = \arg \max_{\theta} p(\mathbf{y} | \theta, \mathbf{X}) p(\theta)$$

Maximum Likelihood Term

- We want to have a point estimate (as opposed to ML)
- Find the point of maximum posterior probability

$$\theta_{MAP} = \arg \max_{\theta} p(\theta | \mathbf{X}, \mathbf{y}) = \arg \max_{\theta} p(\mathbf{y} | \theta, \mathbf{X}) p(\theta)$$

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}; 0, \frac{1}{\lambda} \mathbf{I}^2) \longrightarrow \lambda \boldsymbol{\theta}^T \boldsymbol{\theta}$$

Regularization

Loss cheat sheet

- Softmax loss Scores or predictions $L_i = \frac{e^{s_i}}{\sum_k e^{s_k}}$
- Multi-class SVM loss or Hinge loss

$$L_i = \sum_{j \neq y_i} \max(0, s_i - s_{y_i} + 1)$$

Optimization

Back to linear regression

$$\theta_{ML} = \arg \max_{\theta} p(\mathbf{y} | \mathbf{X}, \theta)$$

$$\int \frac{\partial}{\partial \theta}$$

$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Optimization

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta})$$

- Complex function that cannot be derived in closed form
- Fast way to find a minimum
- Scales to large datasets

Gradient descent

Gradient steps

• From derivative to gradient

'x)

dx

Direction of greatest $\nabla_{\mathbf{x}} f(\mathbf{x})$ Direction of greatest
the function

• Gradient steps in direction of negative gradient

Gradient steps

• From derivative to gradient

df(x)

dx

Direction of greatest
 increase of
 the function

• Gradient steps in direction of negative gradient

Gradient steps

• From derivative to gradient

df(x)

dx

Direction of greatest
 increase of
 the function

• Gradient steps in direction of negative gradient

Numerical gradient

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Approximate
- Slow evaluation

Analytical gradient

• Exact and fast

Remember Linear Regression

$$f(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$f(\boldsymbol{\theta}) = \frac{1}{n} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$
Analytical
$$2\mathbf{X}^T \mathbf{X}\boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y}$$
gradient

Gradient descent for least squares

$$f(\boldsymbol{\theta}) = \frac{1}{n} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \ 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y}$$

Convex, always converges to the same solution

Non-linear least squares

• Not necessarily convex

Stochastic Gradient Descent

• If we have m training samples we need to compute the gradient for all of them which is $\mathcal{O}(m)$

• Gradient is an expectation, and so it can be approximated with a small number of samples

Minibatch
$$\mathbb{B} = \{x^1, \cdots, x^{m'}\}$$

Epoch = complete pass through all the data

Convergence

Stochastic gradient descent

Gradient

Ignore the sum for

SGD $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$ convenience $\boldsymbol{\Theta}$

Momentum update

- Designed to accelerate training
- Define a new term called velocity ${\bf v}$

$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

• The velocity accumulates gradients

SGD
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

Momentum update

$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i) \qquad \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

Step will be largest when a sequence of gradients all point to the same direction

Image: Goodfellow et al.

Momentum update

• Can it overcome local minima?

Nesterov's momentum

• Look-ahead momentum

$$\widetilde{\boldsymbol{\theta}}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_k$$
$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

SGD $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$

Sutskever 2013, Nesterov 1983

Nesterov's momentum

• Look-ahead momentum

$$\widetilde{\boldsymbol{\theta}}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_k$$
$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

SGD $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$

Sutskever 2013, Nesterov 1983

Convergence

More parameters...

$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

Can we relax the dependence on the hyperparameters?

• Adapt the learning rate of all model parameters

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{g} \odot \mathbf{g}$$

Element-wise multiplication

Diagonal matrix with entries that are the square of the gradient

Duchi 2011

• Adapt the learning rate of all model parameters

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$

 $\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{g} \odot \mathbf{g}$

• Adapt the learning rate of all model parameters

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

• Theory: more progress in regions where the function is more flat

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \frac{\epsilon}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}$$

• Practice: for most deep learning models, accumulating gradients from the beginning results in excessive decrease in the effective learning rate

Convergence

RMSProp and Adadelta

• Improvements to AdaGrad to avoid the problem of diminishing learning rate

• Decaying factor applied to the accumulation of gradients

• Old gradients are slowly forgotten

Zeiler, 2012. Hinton, 2012

Convergence

Adam

• Optimizer of choice for most neural networks

• Adam = adaptive moments

• It can be seen as an RMSProp with momentum

Kingma and Ba 2014

AdaGradAdam
$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
 $\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$ $\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{g} \odot \mathbf{g}$ Second order moment $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \frac{\epsilon}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}$ $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \frac{\mathbf{s}}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}$

AdamWe can consider it as
momentumGradient
$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
We can consider it as
momentumFirst order moment $\mathbf{s}_{k+1} = \rho_1 \mathbf{s}_k + (1 - \rho_1) \mathbf{g}$ Second order moment $\mathbf{r}_{k+1} = \rho_2 \mathbf{r}_k + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$ Unbias the moments $\hat{\mathbf{s}}_{k+1} = \frac{\mathbf{s}_{k+1}}{1 - \rho_1}$ $\hat{\mathbf{r}}_{k+1} = \frac{\mathbf{r}_{k+1}}{1 - \rho_2}$ Update step $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \frac{\hat{\mathbf{s}}}{\delta + \sqrt{\hat{\mathbf{r}}_{k+1}}} \odot \mathbf{g}$

Adam

Unbias the moments
$$\hat{\mathbf{s}}_{k+1} = \frac{\mathbf{s}_{k+1}}{1-\rho_1}$$
 $\hat{\mathbf{r}}_{k+1} = \frac{\mathbf{r}_{k+1}}{1-\rho_2}$

 Both moments are initialized to zero, which means that specially at the beginning they have a tendency to converge to zero

$$\rho_1 = 0.9 \qquad \rho_2 = 0.999$$

Go-to optimizer

So far

Classic optimizers: SGM, Momentum, Nesterov's
momentum

 Adaptive learning rates: AdaGrad, Adadelta, RMSProp and Adam

Can we get rid of the learning rate?

Importance of the learning rate

Jacobian and Hessian

- $\frac{df(x)}{dx}$ • Derivative $\mathbf{f}: \mathbb{R} \to \mathbb{R}$
 - Gradient $\mathbf{f}: \mathbb{R}^m \to \mathbb{R} \quad \nabla_{\mathbf{x}} f(\mathbf{x}) \quad \left(\frac{df(x)}{dx_1}, \frac{df(x)}{dx_2}\right)$
 - $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n \quad \mathbf{J} \in \mathbb{R}^{n \times m}$ • Jacobian
 - $\mathbf{f}: \mathbb{R}^m \to \mathbb{R} \qquad \mathbf{H} \in \mathbb{R}^{m \times m} \quad \begin{array}{c} \text{SECOND} \\ \text{DERIVATIVE} \end{array}$ Hessian

• Approximate our function by a second-order Taylor series expansion

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \mathbf{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

First derivative Second derivative (curvature)

https://en.wikipedia.org/wiki/Taylor_series

• SGD (green)

 Newton's method exploits the curvature to take a more direct route

Image from Wikipedia

• Differentiate and equate to zero

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

We got rid of the learning rate!

SGD
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

• Differentiate and equate to zero

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Parameters of a network (millions) k Number of elements in the Hessian k^2

Computational complexity of inversion per iteration $\mathcal{O}(k^3)$

Only small networks can be trained with this method

$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Can you apply Newton's method for linear regression? What do you get as a result?

BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

- BFGS $\mathcal{O}(n^2)$
- Limited memory: L-BFGS $\mathcal{O}(n)$

Which, what and when?

• Standard: Adam

• Fall-back option: SGD with momentum

• L-BFGS if you can do full batch updates (forget applying it to minibatches!!)

Backprop

The importance of gradients

• All optimization schemes are based on computing gradients

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

• We have seen how to compute gradients analytically but what if our function is too complex?

Break down gradient computation

Backpropagation

Rumelhart 1986

Computational graphs

$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

Computational graphs

• These graphs can be huge!

Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

Another view of GoogLeNet's architecture.

An example: chain rule

An example: the chain rule

An example: the chain rule

• Each node is only interested in its own inputs and outputs

An example: the chain rule

• Each node is only interested in its own inputs and outputs

The flow of the gradients

Activation function

The flow of the gradients

Activation function

The flow of the gradients

Many many many many of these nodes form a neural network

NEURONS

• Each one has its own work to do

FORWARD AND BACKWARD PASS

Next lecture

• First exercise starts tomorrow!

 Next Thursday 11th of May: more on backprop, introduction to neural networks!