Introduction to

 Neural Networks
Beyond linear

- Linear score function $f=W x$
plane

On CIFAR-10

On ImageNet

Beyond linear

1-layer network: $f=\mathbf{W x}$

128×128
10

LINEAR
TRANSFORMATION

Beyond linear

1-layer network: $f=\mathbf{W} \mathbf{x}$

128×128
10
LINEAR
TRANSFORMATION

Kernel trick

1-layer network: $f=\mathbf{W x}$

$$
f=\mathbf{W} \phi(\mathbf{x})
$$

kernel
$128 \times 128 \quad 10$

Neural networks

1-layer network: $f=\mathbf{W x}$

$$
f=\mathbf{W} \phi(\mathbf{x} ; \boldsymbol{\theta})
$$

128×128

10
parameters
From the broad family of functions ϕ we learn the best representation by learning the parameters $\boldsymbol{\theta}$

Neural Network

> Also SVM

is in this category
hidden layer

Neural Network

input layer

Width

hidden layer 1 hidden layer 2 hidden layer 3

Depth

Neural Network

- Linear score function $f=W x$
- Neural network is a nesting of 'functions'
- 2-layers: $f=W_{2} \max \left(0, W_{1} x\right)$
- 3-layers: $f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)$
- 4-layers: $f=W_{4} \tanh \left(W_{3}, \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)\right)$
- 5-layers: $f=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)\right)\right)$
- ... up to hundreds of layers

Playing around with networks

- http://cs.stanford.edu/people/karpathy/convnetjs/i ndex.html

Neural Network

- Problems of going deeper...
- The impact of small decisions (architecture, activation functions...)
- Is my network training correctly?

A typical Deep Learner day

- A Andrej Karpathy i lan Goodfellow els agrada

Oriol Vinyals @OriolVinyalsML•9h
A typical training curve in Montezuma's
Revenge (note: there are several random seeds which overlap) \#nips \#rl \#exploration

Output functions

Neural networks

Sigmoid for binary predictions

$$
x_{0}
$$

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Logistic regression

- Probability of a binary output

$\qquad p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})=\prod_{i=1}^{n} \operatorname{Ber}\left(y_{i} \mid \operatorname{sigm}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right)$
$\begin{array}{l}\text { Model for } \\ \text { coins }\end{array}$

Logistic regression

- Probability of a binary output

Logistic regression

- Probability of a binary output

$$
p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})=\prod_{i=1}^{n}\left[\Pi_{i}\right]^{y_{i}}\left[1-\Pi_{i}\right]^{1-y_{i}}
$$

- Maximum Likelihood

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\theta} \log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

Logistic regression

- Probability of a binary output

$$
\Pi_{i}=\frac{1}{1+e^{-\mathbf{x}_{i} \boldsymbol{\theta}}}
$$

$$
p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})=\prod_{i=1}^{n}\left[\Pi_{i}\right]^{y_{i}}\left[1-\Pi_{i}\right]^{1-y_{i}}
$$

$$
C(\boldsymbol{\theta})=-\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

$$
=-\sum_{i=1}^{n} y_{i} \log \left(\Pi_{i}\right)+\left(1-y_{i}\right) \log \left(1-\Pi_{i}\right)
$$

Referred to as cross-entropy

Logistic regression

- Optimize using gradient descent
- Saturation occurs only when the model already has the right answer

$$
\begin{gathered}
C(\boldsymbol{\theta})=-\sum_{i=1}^{n} y_{i} \log \left(\Pi_{i}\right)+\left(1-y_{i}\right) \log \left(1-\Pi_{i}\right) \\
\text { Referred to as cross-entropy }
\end{gathered}
$$

Softmax formulation

- What if we have multiple classes?

Softmax formulation

- What if we have multiple classes?

Softmax formulation

- What if we have multiple classes?

Softmax formulation

- Softmax

$$
p\left(y_{i} \mid \mathbf{x}, \boldsymbol{\theta}\right)=\frac{\left.e^{\mathbf{x} \boldsymbol{\theta}_{i}}\right)^{\exp }}{\sum_{k=1}^{n} e^{\mathbf{x} \boldsymbol{\theta}_{k}}} \text { normalize }
$$

- Softmax loss (ML)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{k} e^{s_{k}}}\right)
$$

Activation functions

Neurons

impulses carried toward cell body

branches
of axon
impulses carried
away from cell body

Neurons

Neural networks

Activation functions or hidden units

Sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Forward

$\frac{\partial L}{\partial x}=\frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma}$
$\frac{\partial \sigma}{\partial x}$
$\frac{\partial L}{\partial \sigma}$

Sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Forward

X Saturated neurons kill the gradient flow

$$
x=6
$$

$$
\frac{\partial 1}{\partial x}=\frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma} \longleftarrow \frac{\partial \sigma}{\partial x} \longleftarrow \frac{\partial L}{\partial \sigma}
$$

$$
\text { Sigmoid } \quad \sigma(x)=\frac{1}{1+e^{-x}}
$$

Forward

Active region for gradient descent
$\frac{\partial L}{\partial x}=\frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma}$
$\frac{\partial \sigma}{\partial x}$
$\frac{\partial L}{\partial \sigma}$

Sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Output is always positive

Problem of positive output

$$
f\left(\sum_{i} w_{i} x_{i}+b\right)
$$

We want to compute the gradient wrt the weights

Problem of positive output

We want to compute the gradient wrt the weights

Problem of positive output

It is going to be either positive or negative for all weights

Problem of positive output

tanh

X Still saturates

X Still saturates

Zero-
centered

LeCun 1991

Rectified Linear Units (ReLU)

$$
\sigma(x)=\max (0, x)
$$

^Large and consistent gradients
\checkmark Fast convergence
\checkmark Does not saturate
Krizhevsky 2012

Rectified Linear Units (ReLU)

X Dead ReLU

What happens if a ReLU outputs zero?

Large and consistent gradients
\checkmark Fast convergence
Does not saturate

Rectified Linear Units (ReLU)

- Initializing ReLU neurons with slightly positive biases (0.1) makes it likely that they stay active for most inputs

$$
f\left(\sum_{i} w_{i} x_{i}+(b)\right)
$$

Leaky ReLU

$$
\sigma(x)=\max (0.01 x, x)
$$

Does not die

Parametric ReLU

$$
\sigma(x)=\max (\alpha x, x)
$$

Does not die

Maxout units

Goodfellow 2013

Maxout units

Goodfellow 2013

Maxout units

Quick guide

- Sigmoid is not really used
- ReLU is the standard choice
- Second choice are the variants of ReLu or Maxout
- Recurrent nets will require tanh or similar

A quick word on data pre-processing

Data pre-processing

For images subtract the mean image (AlexNet) or perchannel mean (VGG-Net)

TIII

Weight initialization

How do I start?

Forward

hidden layer

Initialization is extremely important

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

How do I start?

$$
w=0
$$

What
happens to the gradients?

$$
f\left(\sum_{i} w_{i} x_{i}+b\right)
$$

No symmetry
hidden layer breaking

Small random numbers

- Gaussian with zero mean and standard deviation 0.01
- Let us see what happens:
- Network with 10 layers with 500 neurons each
- Tanh as activation functions
- Input unit Gaussian data

Small random numbers

Small random numbers

$$
f\left(\sum_{i}\left(m_{i} \mathfrak{m}_{i}+b\right)\right.
$$

Forward

Small random numbers

Gradients
vanish

$$
f\left(\sum_{i} w \sqrt{x_{i}}+b\right)
$$

Backward

Big random numbers

- Gaussian with zero mean and standard deviation 1
- Let us see what happens:
- Network with 10 layers with 500 neurons each
- Tanh as activation functions
- Input unit Gaussian data

Big random numbers

Everything is saturated

Xavier initialization

- Gaussian with zero mean, but what standard deviation?
$\operatorname{Var}(s)=\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right)$

Xavier initialization

- Gaussian with zero mean, but what standard deviation?

$$
\begin{aligned}
& \operatorname{Var}(s)=\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \longrightarrow \text { Independent } \\
&= \sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} / \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2 / 2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& \text { Zero mean }
\end{aligned}
$$

Xavier initialization

- Gaussian with zero mean, but what standard deviation?

$$
\begin{aligned}
& \operatorname{Var}(s)=\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
&=\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
&=\sum_{i}^{n} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)=(n \operatorname{Var}(w)) \operatorname{Var}(x) \\
& \text { Identically distributed }
\end{aligned}
$$

Xavier initialization

- Gaussian with zero mean, but what standard deviation?

$$
\begin{aligned}
\operatorname{Var}(s) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
& =\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& =\sum_{i}^{n} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)=(n \operatorname{ar}(w)) \operatorname{Var}(x)
\end{aligned}
$$

Variance gets multiplied by the number of inputs

Xavier initialization

- How to ensure the variance of the output is the same as the input?

$$
\begin{aligned}
& \frac{(n \operatorname{Var}(w)) \operatorname{Var}(x)}{1} \\
& \operatorname{Var}(w)=\frac{1}{n}
\end{aligned}
$$

Xavier initialization

Xavier initialization with ReLU

ReLU kills half of the data

$\operatorname{Var}(w)=\frac{2}{n}$

He 2015

ReLU kills half of the data

$\operatorname{Var}(w)=\frac{2}{n} \quad$ It makes a huge difference!

Tips and tricks

- Use ReLU and Xavier/2 initialization

TIII

Batch normalization

Batch normalization

- Wish: unit Gaussian activations
- Solution: let's do it
dimension

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch normalization

- In each dimension of the features, you have a unit gaussian
$N=$ mini-batch size

D = \#features

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch normalization

- In each dimension of the features, you have a unit Gaussian
- Is it ok to treat dimensions separately? Shown empirically that even if features are not decorrelated, convergence is still faster with this method

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Differentiable function so we can backprop through it....

Batch normalization

- A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions
- Is it a good idea to have all unit Gaussians before tanh?

Batch normalization

- Normalize

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

- Allow the network to change the range

$$
y^{(k)}=\gamma_{\text {backprop }}^{(k)} \hat{x}^{(k)}+\beta^{(k)}
$$

The network can learn to undo the normalization

$$
\begin{gathered}
\gamma^{(k)}=\sqrt{\operatorname{Var}\left[x^{(k)}\right]} \\
\beta^{(k)}=\mathrm{E}\left[x^{(k)}\right]
\end{gathered}
$$

BN for Exercise 2

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{aligned}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}
\end{aligned}
$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Input: Network N with trainable parameters Θ; subset of activations $\left\{x^{(k)}\right\}_{k=1}^{K}$
Output: Batch-normalized network for inference, $N_{\mathrm{BN}}^{\mathrm{nnf}}$
1: $N_{\mathrm{BN}}^{\mathrm{tr}} \leftarrow N \quad / /$ Training BN network
for $k=1 \ldots K$ do
Add transformation $y^{(k)}=\mathrm{BN}_{\gamma^{(k)}, \beta^{(k)}}\left(x^{(k)}\right)$ to $N_{\mathrm{BN}}^{\mathrm{tr}}$ (Alg. 1)
4: Modify each layer in $N_{\mathrm{BN}}^{\mathrm{tr}}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
5: end for
6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup$ $\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
$N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}} \quad / /$ Inference BN network with frozen // parameters
for $k=1 \ldots K$ do
$/ /$ For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
10: Process multiple training mini-batches \mathcal{B}, each of size m, and average over them:

$$
\begin{aligned}
\mathrm{E}[x] & \leftarrow \mathrm{E}_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right] \\
\operatorname{Var}[x] & \leftarrow \frac{m}{m-1} \mathrm{E}_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]
\end{aligned}
$$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y=\mathrm{BN}_{\gamma, \beta}(x)$ with $y=\frac{\gamma}{\sqrt{\operatorname{Var}[x]+\epsilon}} \cdot x+\left(\beta-\frac{\gamma \mathrm{E}[x]}{\sqrt{\operatorname{Var}[x]+\epsilon}}\right)$
12: end for

Algorithm 2: Training a Batch-Normalized Network

Administrative Things

- Next Thursday May $25^{\text {th. }}$. No Lecture!

- Thursday June $1^{\text {st }}$
- More on Neural Networks - $^{\text {- }}$
- Tomorrow: Solution $1^{\text {st }}$ exercise, presentation $2^{\text {nd }}$

