
Introduction to
Neural Networks

Beyond linear

• Linear score function 𝑓 = 𝑊𝑥

Credit: Li/Karpathy/Johnson

On CIFAR-10

On ImageNet

Beyond linear

LINEAR
TRANSFORMATION

1-layer network:

x
W

128×128

f

10

f = Wx

Beyond linear

LINEAR
TRANSFORMATION

1-layer network:

x
W

128×128

f

10

f = Wx

Kernel trick

1-layer network:

x
W

128×128

f

10

f = W�(x)f = Wx

kernel

Neural networks

1-layer network:

x
W

128×128

f

10

f = Wx

kernel

f = W�(x;✓)

parameters

From the broad family of functions we learn the
best representation by learning the parameters ✓

�

Neural Network

Credit: Li/Karpathy/Johnson

Also SVM
is in this
category

�

Neural Network

Depth

W
id

th

Neural Network

• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊-max(0,𝑊2𝑥)
– 3-layers: 𝑓 = 𝑊4max(0,𝑊- max(0,𝑊2𝑥))
– 4-layers: 𝑓 = 𝑊5 tanh	(W4,max(0,𝑊- max(0, 𝑊2𝑥)))	
– 5-layers: 𝑓 = 𝑊:𝜎(𝑊5 tanh	(W4,max(0,𝑊- max(0, 𝑊2𝑥))))	
– … up to hundreds of layers

Playing around with networks

• http://cs.stanford.edu/people/karpathy/convnetjs/i
ndex.html

Neural Network

• Problems of going deeper…

• The impact of small decisions (architecture, activation
functions...)

• Is my network training correctly?

A typical Deep Learner day

Output functions

Neural networks
What is the shape of
this function?

Loss
(Softmax,

Hinge)

Prediction

Sigmoid for binary predictions

x0

x1

x2

X

0

Can be
interpreted as
a probability

1

p(yi = 1|xi,✓)

✓0

✓1

✓2

�(x) =
1

1 + e

�x

Logistic regression

• Probability of a binary output

p(y|X,✓) =
nY

i=1

Ber(yi|sigm(xi,✓))

Model for
coins

p(x|�) = �

x(1� �)1�x =
� if x = 1

1� � if x = 0

Logistic regression

• Probability of a binary output

p(y|X,✓) =
nY

i=1

Ber(yi|sigm(xi,✓))

�(x) =
1

1 + e

�x

=
nY

i=1

1

1 + e�xi✓

�yi

1� 1

1 + e�xi✓

�1�yi

⇧i ⇧i

p(x|�) = �

x(1� �)1�x =

Logistic regression

• Probability of a binary output

• Maximum Likelihood

p(y|X,✓) =
nY

i=1

[⇧i]
yi [1�⇧i]

1�yi

✓ML = argmax

✓
log p(y|X,✓)

Logistic regression

• Probability of a binary output

p(y|X,✓) =
nY

i=1

[⇧i]
yi [1�⇧i]

1�yi

C(✓) = � log p(y|X,✓)

Referred to as cross-entropy

⇧i =
1

1 + e�xi✓

= �
nX

i=1

yi log(⇧i) + (1� yi) log(1�⇧i)

Logistic regression

• Optimize using gradient descent

• Saturation occurs only when the model already has
the right answer

C(✓) = � log p(y|X,✓)

Referred to as cross-entropy

= �
nX

i=1

yi log(⇧i) + (1� yi) log(1�⇧i)

Softmax formulation

• What if we have multiple classes?

x0

x1

x2

X
⇧i

✓0

✓1

✓2

Softmax formulation

• What if we have multiple classes?

x0

x1

x2

X

Softmax
X

Softmax formulation

• What if we have multiple classes?

⇧2 =
exi✓2

exi✓1 + exi✓2

x0

x1

x2

X

Softmax
X

⇧1 =
exi✓1

exi✓1 + exi✓2

Softmax formulation

• Softmax

• Softmax loss (ML)

p(yi|x,✓) =
ex✓i

nP
k=1

ex✓k

Li = � log

✓
esyiP
k e

sk

◆

exp

normalize

Activation functions

Neurons

Neurons

Neural networks
What is the shape of
this function?

Loss
(Softmax,

Hinge)

Prediction

Activation functions or hidden units

x0

x1

x2
w2

w1

w0

X

Sigmoid
�(x) =

1

1 + e

�x

x0

x1

x2
w2

w1

w0

X
yi 2 {0, 1}

Can be
interpreted as
a probability

Sigmoid
�(x) =

1

1 + e

�x

@L

@�

@�

@x

@L

@x

=
@�

@x

@L

@�

Forward

Sigmoid
�(x) =

1

1 + e

�x

@L

@�

@�

@x

@L

@x

=
@�

@x

@L

@�

Forward

x = 6
Saturated

neurons kill the
gradient flow

Sigmoid
�(x) =

1

1 + e

�x

@L

@�

@�

@x

@L

@x

=
@�

@x

@L

@�

Forward

Active region
for gradient

descent

Sigmoid
�(x) =

1

1 + e

�x

Output is
always
positive

Problem of positive output
x0

x1

x2
w2

w1

w0

X
f

X

i

wixi + b

!

We want to compute the gradient wrt the weights

Problem of positive output
x0

x1

x2
w2

w1

w0

X
f

X

i

wixi + b

!

We want to compute the gradient wrt the weights

f
z

@z

@w

= xi > 0

Problem of positive output
x0

x1

x2
w2

w1

w0

X
f

X

i

wixi + b

!

It is going to be either positive or negative for all weights

f
z

@z

@w

= xi > 0

@f

@z

Problem of positive output

w1

w2

More on zero-
mean data later

tanh

Zero-
centered

Still saturates

Still saturates

LeCun 1991

Rectified Linear Units (ReLU)

Large and
consistent
gradients

Does not saturateFast convergence

Krizhevsky 2012

�(x) = max(0, x)

Rectified Linear Units (ReLU)

Large and
consistent
gradients

Does not saturateFast convergence

What happens if a
ReLU outputs zero?

Dead ReLU

Rectified Linear Units (ReLU)

• Initializing ReLU neurons with slightly positive biases
(0.1) makes it likely that they stay active for most
inputs

f

X

i

wixi + b

!

Leaky ReLU

Does not die

�(x) = max(0.01x, x)

Mass 2013

Parametric ReLU

Does not die

�(x) = max(↵x, x)

One more parameter
to backprop into

He 2015

Maxout units

Goodfellow 2013

x0

x1

x2

X

X

w01

w02
w11

w12

w21

w22

max

Maxout units

Goodfellow 2013

Piecewise linear approximation of
a convex function with N pieces

Maxout units

Generalization
of ReLUs

Linear
regimes

Does not
die

Does not
saturate

Increase of the number of parameters

Quick guide

• Sigmoid is not really used

• ReLU is the standard choice

• Second choice are the variants of ReLu or Maxout

• Recurrent nets will require tanh or similar

A quick word on
data pre-processing

Data pre-processing

For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net)

Weight initialization

How do I start?

w
w

w
w

Forward

Initialization is extremely important

Optimum

Initialization

Not guaranteed
to reach the

optimum

How do I start?

w
w

w
w

Forward

w = 0

f

X

i

wixi + b

!

What
happens to
the
gradients? No symmetry

breaking

Small random numbers

• Gaussian with zero mean and standard deviation 0.01

• Let us see what happens:
– Network with 10 layers with 500 neurons each

– Tanh as activation functions

– Input unit Gaussian data

Small random numbers

Forward

Input
Last
layer

Activations
become zero

Small random numbers

Forward

f

X

i

wixi + b

!small

Small random numbers

Backward

f

X

i

wixi + b

!
Gradients

vanish

Big random numbers

• Gaussian with zero mean and standard deviation 1

• Let us see what happens:
– Network with 10 layers with 500 neurons each

– Tanh as activation functions

– Input unit Gaussian data

Big random numbers

Everything
is saturated

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Glorot 2010

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Independent

Zero mean

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Identically distributed

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Variance gets multiplied by the number of inputs

Xavier initialization

• How to ensure the variance of the output is the same
as the input?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

1

V ar(w) =
1

n

Xavier initialization

Mitigates the effect of
activations going to

zero

Xavier initialization with ReLU

ReLU kills half of the data
V ar(w) =

2

n

He 2015

ReLU kills half of the data
V ar(w) =

2

n

He 2015

It makes a huge difference!

Tips and tricks

• Use ReLU and Xavier/2 initialization

Batch normalization

Batch normalization

• Wish: unit Gaussian activations
• Solution: let’s do it

Ioffe and Szegedy 2015

x̂

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

D = #features

N
=

m
in

i-
b

at
ch

 s
iz

e
dimension

Batch normalization

• In each dimension of the features, you have a unit
gaussian

Ioffe and Szegedy 2015

x̂

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

D = #features

N
=

m
in

i-
b

at
ch

 s
iz

e
dimension

Batch normalization

• In each dimension of the features, you have a unit
Gaussian

• Is it ok to treat dimensions separately? Shown
empirically that even if features are not decorrelated,
convergence is still faster with this method

Ioffe and Szegedy 2015

x̂

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Differentiable function so
we can backprop

through it….

Batch normalization

• A layer to be applied after Fully
Connected (or Convolutional) layers
and before non-linear activation
functions

• Is it a good idea to have all unit
Gaussians before tanh?

Ioffe and Szegedy 2015

Batch normalization

• Normalize

• Allow the network to change the
range

Ioffe and Szegedy 2015

x̂

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

y

(k) = �

(k)
x̂

(k) + �

(k)

backprop

�

(k) =
q

Var[x(k)]

�

(k) = E[x(k)]

The network can
learn to undo the

normalization

BN for Exercise 2

Administrative Things

• Next Thursday May 25th: No Lecture!

• Thursday June 1st :
– More on Neural Networks J

• Tomorrow: Solution 1st exercise, presentation 2nd

