
Introduction to 
Neural Networks



Beyond linear

• Linear score function 𝑓 = 𝑊𝑥

Credit: Li/Karpathy/Johnson

On CIFAR-10

On ImageNet
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Neural networks

1-layer network:
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f = W�(x;✓)

parameters

From the broad family of functions     we learn the 
best representation by learning the parameters ✓

�



Neural Network

Credit: Li/Karpathy/Johnson

Also SVM 
is in this 
category

�
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Neural Network

• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊-max(0,𝑊2𝑥)
– 3-layers: 𝑓 = 𝑊4max(0,𝑊- max(0,𝑊2𝑥))
– 4-layers: 𝑓 = 𝑊5 tanh	(W4,max(0,𝑊- max(0, 𝑊2𝑥)))	
– 5-layers: 𝑓 = 𝑊:𝜎(𝑊5 tanh	(W4,max(0,𝑊- max(0, 𝑊2𝑥))))	
– … up to hundreds of layers 



Playing around with networks

• http://cs.stanford.edu/people/karpathy/convnetjs/i
ndex.html



Neural Network

• Problems of going deeper…

• The impact of small decisions (architecture, activation 
functions...)

• Is my network training correctly? 



A typical Deep Learner day



Output functions



Neural networks
What is the shape of 
this function?

Loss 
(Softmax, 

Hinge)

Prediction



Sigmoid for binary predictions
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Logistic regression

• Probability of a binary output 

p(y|X,✓) =
nY

i=1

Ber(yi|sigm(xi,✓))

Model for 
coins

p(x|�) = �

x(1� �)1�x =
� if x = 1

1� � if x = 0



Logistic regression

• Probability of a binary output 

p(y|X,✓) =
nY
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Logistic regression

• Probability of a binary output 

• Maximum Likelihood

p(y|X,✓) =
nY

i=1

[⇧i]
yi [1�⇧i]

1�yi

✓ML = argmax

✓
log p(y|X,✓)



Logistic regression

• Probability of a binary output 

p(y|X,✓) =
nY

i=1

[⇧i]
yi [1�⇧i]

1�yi

C(✓) = � log p(y|X,✓)

Referred to as cross-entropy

⇧i =
1

1 + e�xi✓

= �
nX

i=1

yi log(⇧i) + (1� yi) log(1�⇧i)



Logistic regression

• Optimize using gradient descent

• Saturation occurs only when the model already has 
the right answer

C(✓) = � log p(y|X,✓)

Referred to as cross-entropy

= �
nX

i=1

yi log(⇧i) + (1� yi) log(1�⇧i)



Softmax formulation

• What if we have multiple classes?
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Softmax formulation

• What if we have multiple classes?

⇧2 =
exi✓2

exi✓1 + exi✓2

x0
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X

Softmax
X
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exi✓1 + exi✓2



Softmax formulation

• Softmax

• Softmax loss (ML) 

p(yi|x,✓) =
ex✓i

nP
k=1

ex✓k

Li = � log

✓
esyiP
k e

sk
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exp

normalize



Activation functions



Neurons



Neurons



Neural networks
What is the shape of 
this function?

Loss 
(Softmax, 

Hinge)

Prediction



Activation functions or hidden units
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Sigmoid
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Sigmoid
�(x) =
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1 + e
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Output is 
always 
positive



Problem of positive output
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Problem of positive output
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Problem of positive output

w1

w2

More on zero-
mean data later



tanh

Zero-
centered

Still saturates

Still saturates

LeCun 1991



Rectified Linear Units (ReLU)

Large and 
consistent 
gradients

Does not saturateFast convergence

Krizhevsky 2012

�(x) = max(0, x)



Rectified Linear Units (ReLU)

Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU



Rectified Linear Units (ReLU)

• Initializing ReLU neurons with slightly positive biases 
(0.1) makes it likely that they stay active for most 
inputs
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Leaky ReLU

Does not die

�(x) = max(0.01x, x)

Mass 2013



Parametric ReLU

Does not die

�(x) = max(↵x, x)

One more parameter 
to backprop into

He 2015



Maxout units

Goodfellow 2013
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Maxout units

Goodfellow 2013

Piecewise linear approximation of 
a convex function with N pieces



Maxout units

Generalization 
of ReLUs

Linear 
regimes

Does not 
die

Does not 
saturate

Increase of the number of parameters



Quick guide

• Sigmoid is not really used

• ReLU is the standard choice 

• Second choice are the variants of ReLu or Maxout

• Recurrent nets will require tanh or similar



A quick word on 
data pre-processing



Data pre-processing

For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net)



Weight initialization



How do I start?
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Initialization is extremely important

Optimum

Initialization

Not guaranteed 
to reach the 

optimum



How do I start?
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w = 0
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What 
happens to 
the 
gradients? No symmetry 

breaking



Small random numbers

• Gaussian with zero mean and standard deviation 0.01

• Let us see what happens: 
– Network with 10 layers with 500 neurons each

– Tanh as activation functions

– Input unit Gaussian data



Small random numbers

Forward

Input
Last 
layer

Activations 
become zero



Small random numbers

Forward
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Small random numbers

Backward

f

 
X

i

wixi + b

!
Gradients 

vanish



Big random numbers

• Gaussian with zero mean and standard deviation 1

• Let us see what happens: 
– Network with 10 layers with 500 neurons each

– Tanh as activation functions

– Input unit Gaussian data



Big random numbers

Everything 
is saturated



Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Glorot 2010



Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
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Identically distributed



Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
nX
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[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
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Var(xi)Var(wi) = (nVar(w))Var(x)

Variance gets multiplied by the number of inputs



Xavier initialization

• How to ensure the variance of the output is the same 
as the input?

Var(s) = Var(
nX
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Xavier initialization

Mitigates the effect of  
activations going to 

zero



Xavier initialization with ReLU



ReLU kills half of the data
V ar(w) =

2

n

He 2015



ReLU kills half of the data
V ar(w) =

2

n

He 2015

It makes a huge difference!



Tips and tricks

• Use ReLU and Xavier/2 initialization



Batch normalization



Batch normalization

• Wish: unit Gaussian activations
• Solution: let’s do it

Ioffe and Szegedy 2015
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Batch normalization

• In each dimension of the features, you have a unit 
gaussian

Ioffe and Szegedy 2015
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Batch normalization

• In each dimension of the features, you have a unit 
Gaussian

• Is it ok to treat dimensions separately? Shown 
empirically that even if features are not decorrelated, 
convergence is still faster with this method

Ioffe and Szegedy 2015

x̂

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

Differentiable function so 
we can backprop

through it….



Batch normalization

• A layer to be applied after Fully 
Connected (or Convolutional) layers 
and before non-linear activation 
functions

• Is it a good idea to have all unit 
Gaussians before tanh?

Ioffe and Szegedy 2015



Batch normalization

• Normalize

• Allow the network to change the 
range

Ioffe and Szegedy 2015

x̂

(k) =
x

(k) � E[x(k)]p
Var[x(k)]

y

(k) = �

(k)
x̂

(k) + �

(k)

backprop

�

(k) =
q

Var[x(k)]

�

(k) = E[x(k)]

The network can 
learn to undo the 

normalization



BN for Exercise 2



Administrative Things

• Next Thursday May 25th: No Lecture!

• Thursday June 1st : 
– More on Neural Networks J

• Tomorrow: Solution 1st exercise, presentation 2nd


