

Introduction to Neural Networks

Beyond linear

• Linear score function f = Wx

On CIFAR-10

On ImageNet

Credit Li/Karpathy/Johnson

Beyond linear

1-layer network: $f = \mathbf{W}\mathbf{x}$

128×128 10

LINEAR TRANSFORMATION

Beyond linear

Kernel trick

1-layer network: $f = \mathbf{W}\mathbf{x}$

Neural networks

From the broad family of functions ϕ we learn the best representation by learning the parameters θ

Also SVM is in this category

Depth

• Linear score function f = Wx

• Neural network is a nesting of 'functions'

- 2-layers:
$$f = W_2 \max(0, W_1 x)$$

- 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
- 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
- 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
- ... up to hundreds of layers

Playing around with networks

 <u>http://cs.stanford.edu/people/karpathy/convnetjs/i</u> <u>ndex.html</u>

• Problems of going deeper...

• The impact of small decisions (architecture, activation functions...)

• Is my network training correctly?

A typical Deep Learner day

A Andrej Karpathy i Ian Goodfellow els agrada

Oriol Vinyals @OriolVinyalsML · 9h A typical training curve in Montezuma's Revenge (note: there are several random seeds which overlap) 🚔 #nips #rl #exploration

Output functions

Neural networks

• Probability of a binary output

М

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} \operatorname{Ber}(y_{i}|\operatorname{sigm}(\mathbf{x}_{i}, \boldsymbol{\theta}))$$
odel for $p(x|\phi) = \phi^{x}(1-\phi)^{1-x} = \begin{cases} \phi & \text{if } x = 1 \\ 1-\phi & \text{if } x = 0 \end{cases}$

• Probability of a binary output

• Probability of a binary output

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} \left[\Pi_{i}\right]^{y_{i}} \left[1 - \Pi_{i}\right]^{1-y_{i}}$$

• Maximum Likelihood

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta})$$

• Probability of a binary output

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} \left[\Pi_{i}\right]^{y_{i}} \left[1 - \Pi_{i}\right]^{1-y_{i}}$$

 $\Pi_i = \frac{1}{1 + e^{-\mathbf{x}_i \boldsymbol{\theta}}}$

$$C(\boldsymbol{\theta}) = -\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$
$$= -\sum_{i=1}^{n} y_i \log(\Pi_i) + (1 - y_i) \log(1 - \Pi_i)$$

Referred to as cross-entropy

• Optimize using gradient descent

• Saturation occurs only when the model already has the right answer

$$C(\boldsymbol{\theta}) = -\sum_{i=1}^{n} y_i \log(\Pi_i) + (1 - y_i) \log(1 - \Pi_i)$$

Referred to as cross-entropy

• What if we have multiple classes?

• What if we have multiple classes?

• What if we have multiple classes?

- Softmax $p(y_i | \mathbf{x}, \boldsymbol{\theta}) = \frac{e^{\mathbf{x}\boldsymbol{\theta}_i}}{\sum_{k=1}^n e^{\mathbf{x}\boldsymbol{\theta}_k}} \text{ normalize}$
- Softmax loss (ML)

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}}\right)$$

Activation functions

Neurons

Neurons

Neural networks

Activation functions or hidden units

Sigmoid

 $\frac{1}{1+e^{-x}}$ $\sigma(x)$

Output is always positive

Problem of positive output

We want to compute the gradient wrt the weights

Problem of positive output

We want to compute the gradient wrt the weights
Problem of positive output

It is going to be either positive or negative for all weights

tanh

Rectified Linear Units (ReLU)

Krizhevsky 2012

Rectified Linear Units (ReLU)

Rectified Linear Units (ReLU)

 Initializing ReLU neurons with slightly positive biases (0.1) makes it likely that they stay active for most inputs

 $f\left(\sum_{i} w_i x_i + b\right)$

Mass 2013

Parametric ReLU

He 2015

Maxout units

Goodfellow 2013

Maxout units

Piecewise linear approximation of a convex function with N pieces

Goodfellow 2013

Maxout units

Quick guide

• Sigmoid is not really used

• ReLU is the standard choice

• Second choice are the variants of ReLu or Maxout

• Recurrent nets will require tanh or similar

A quick word on data pre-processing

Data pre-processing

For images subtract the mean image (AlexNet) or perchannel mean (VGG-Net)

Weight initialization

How do I start?

• Gaussian with zero mean and standard deviation 0.01

- Let us see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data

Forwarc

Gradients vanish

Big random numbers

• Gaussian with zero mean and standard deviation 1

- Let us see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data

Big random numbers

Everything is saturated

$$\operatorname{Var}(s) = \operatorname{Var}(\sum_{i}^{n} w_{i} x_{i}) = \sum_{i}^{n} \operatorname{Var}(w_{i} x_{i})$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

Zero mean

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = (nVar(w)) Var(x)$$
$$Identically distributed$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = n Var(w) Var(x)$$
Variance gets multiplied by the number of inputs

• How to ensure the variance of the output is the same as the input?

$$Var(w) = \frac{1}{n}$$

Xavier initialization with ReLU

ReLU kills half of the data

He 2015

ReLU kills half of the data

$$Var(w) = \frac{2}{n}$$
 It makes a huge difference!

He 2015

Tips and tricks

• Use ReLU and Xavier/2 initialization

Batch normalization

Batch normalization

- Wish: unit Gaussian activations
- Solution: let's do it

loffe and Szegedy 2015
• In each dimension of the features, you have a unit dimension

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

- In each dimension of the features, you have a unit Gaussian
- Is it ok to treat dimensions separately? Shown empirically that even if features are not decorrelated, convergence is still faster with this method

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

Differentiable function so we can backprop through it....

• A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions

• Is it a good idea to have all unit Gaussians before tanh?

• Normalize

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

• Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

backprop

The network can learn to undo the normalization

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

BN for Exercise 2

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch. **Input:** Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$ Output: Batch-normalized network for inference, N^{inf}_{BN} 1: $N_{BN}^{tr} \leftarrow N$ // Training BN network 2: for k = 1 ... K do Add transformation $y^{(k)} = BN_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to 3: $N_{\rm BN}^{\rm tr}$ (Alg. 1) 4: Modify each layer in N_{BN}^{tr} with input $x^{(k)}$ to take $y^{(k)}$ instead 5: end for 6: Train $N_{\rm BN}^{\rm tr}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$ 7: $N_{BN}^{inf} \leftarrow N_{BN}^{tr}$ // Inference BN network with frozen // parameters 8: for k = 1 ... K do // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_B \equiv \mu_B^{(k)}$, etc. 9: Process multiple training mini-batches B, each of 10: size m, and average over them: $E[x] \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$ $\operatorname{Var}[x] \leftarrow \frac{m}{m-1} \operatorname{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$ In $N_{\rm BN}^{\rm inf}$, replace the transform $y = BN_{\gamma,\beta}(x)$ with 11: $y = \frac{\gamma}{\sqrt{\operatorname{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \operatorname{E}[x]}{\sqrt{\operatorname{Var}[x] + \epsilon}}\right)$ 12: end for

Algorithm 2: Training a Batch-Normalized Network

Administrative Things

• Next Thursday May 25th: No Lecture!

- Thursday June 1st :
 - More on Neural Networks 🕲

• Tomorrow: Solution 1st exercise, presentation 2nd