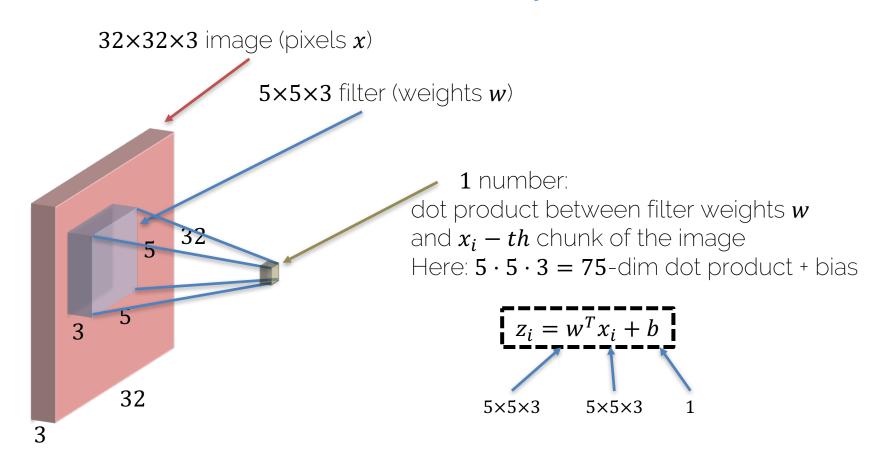
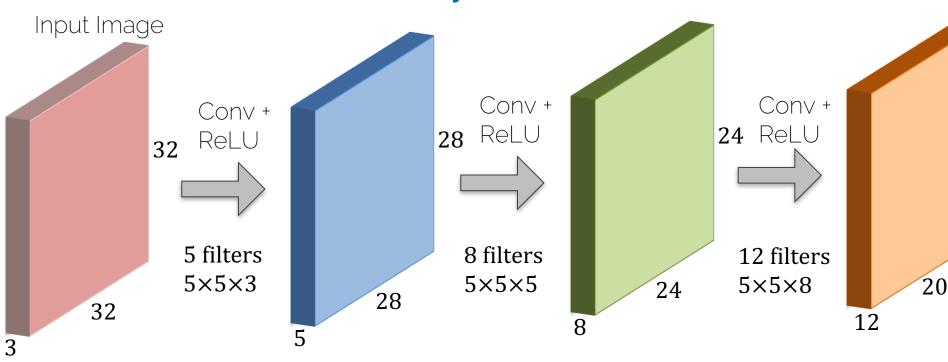


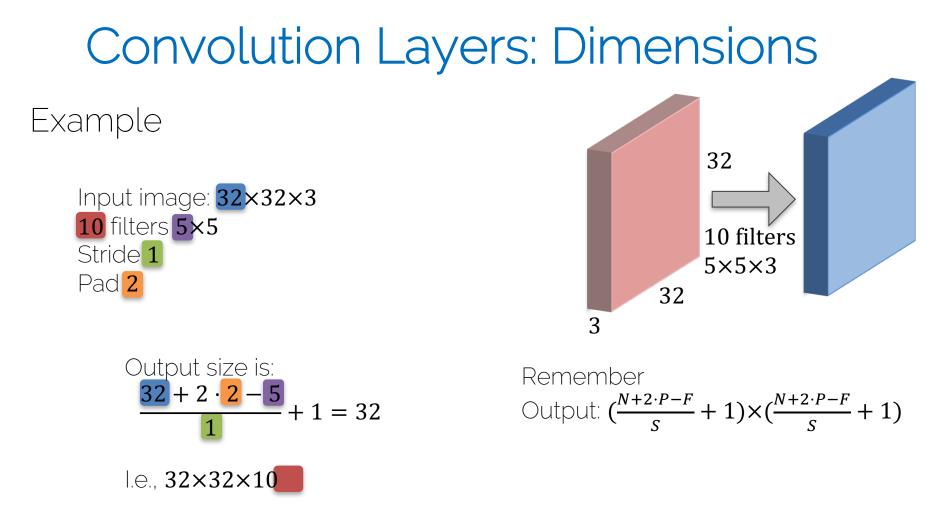
Lecture 7 Recap

Convolution Layers



Convolution Layers: Dimensions





Convolution Layers: Dimensions

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Four hyperparameters
 - Number of filters K
 - Spatial filter extent F
 - Stride *S*
 - Zero padding P
- Output volume is of size *W*_{out}×*H*_{out}×*D*_{out}

$$- W_{out} = \frac{W_{in} - F + 2 \cdot P}{S} + 1$$
$$- H_{out} = \frac{H_{in} - F + 2 \cdot P}{S} + 1$$
$$- D_{out} = K$$

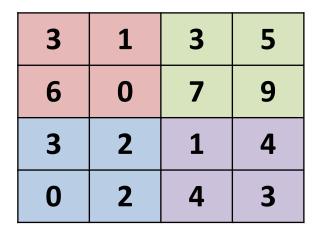
Common settings: K =' powers of 2', e. g., 32, 64, 128, 512 F = 3, S = 1, P = 1 F = 5, S = 1, P = 2 F = 5, S = 2, P = (whatever fits)F = 1, S = 1, P = 0

- There are $F \cdot F \cdot D_{in}$ weights per filter; i.e., a total of $(F \cdot F \cdot D_{in}) \cdot K$ weights and K biases
- In the output volume, the *D*-th depth slice of size $(W_{out} \times H_{out})$ is the result of the convolution of the *D*-th over the input volume with a stride of *S*, and offset by its bias

Slide by Li/Karpathy/Johnson

Pooling Layer: Max Pooling

Single depth slice of input



9

4

Pooling Layer

- Input is a volume of size $W_{in} \times H_{in} \times D_{in}$
- Four hyperparameters
 - Spatial filter extent F
 - Stride S
- Output volume is of size $W_{out} \times H_{out} \times D_{out}$

$$- W_{out} = \frac{W_{in} - F}{S} + 1$$
$$- H_{out} = \frac{H_{in} - F}{S} + 1$$

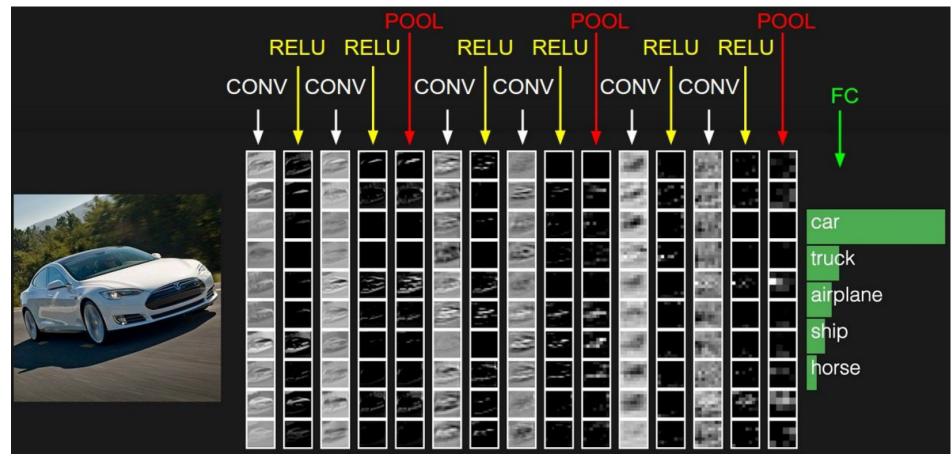
$$- D_{out} = D_{in}$$

• Does not contain parameters; e.g., its fixed function

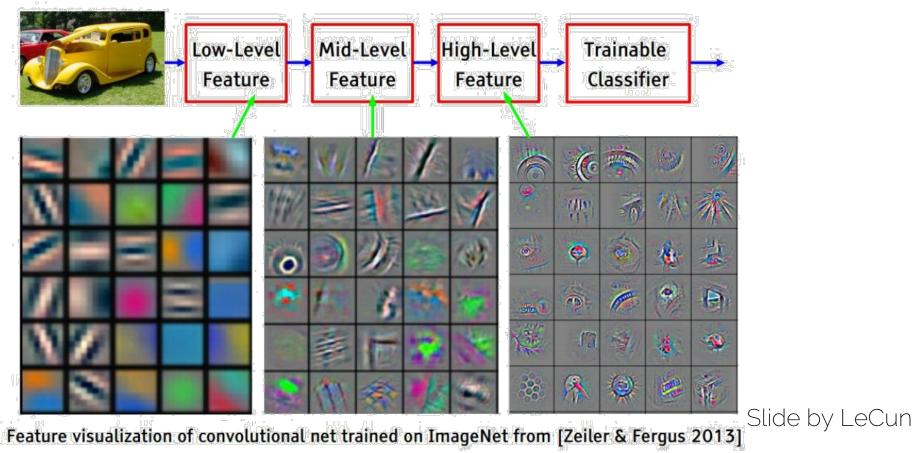
Common settings:

F = 2, S = 2F = 3, S = 2

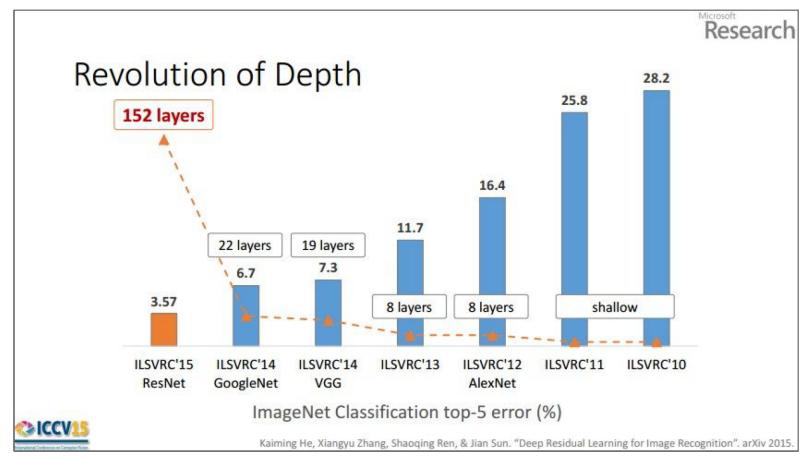
Convolutional Neural Network



Convolutional Neural Network

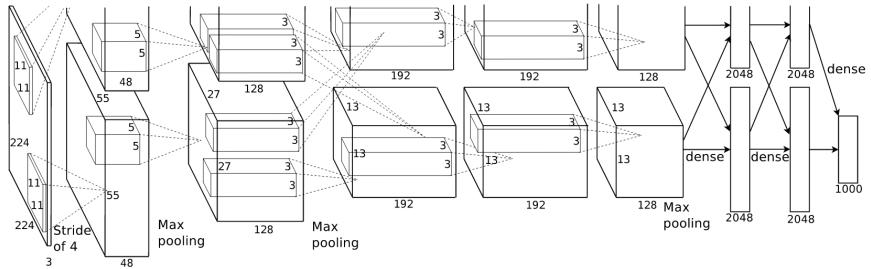


CNN Architectures



CNN Architectures: AlexNet

[Krizhevskv et al. 2012]



Input: 227×227×3 images

Conv1 -> MaxPool1 -> Norm1 -> Conv2 -> MaxPool2 -> Norm2 -> -> Conv3 -> Conv4 -> Conv5 -> Maxpool3 -> FC6 -> FC7 -> FC8

First use of ReLU!

CNN Architectures: VGGNet

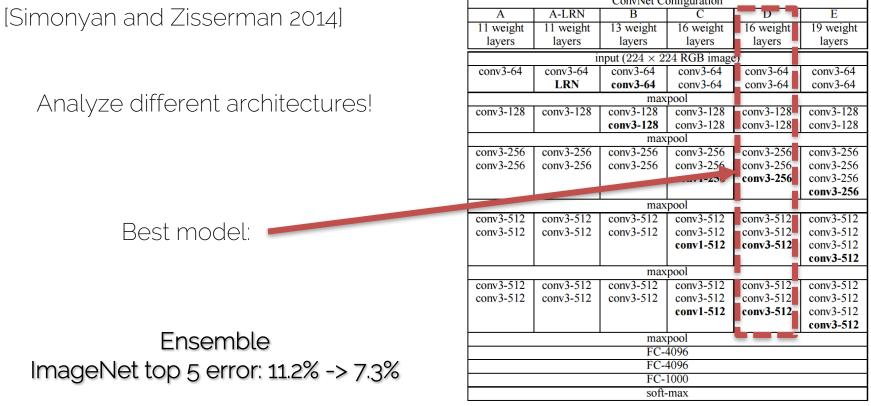
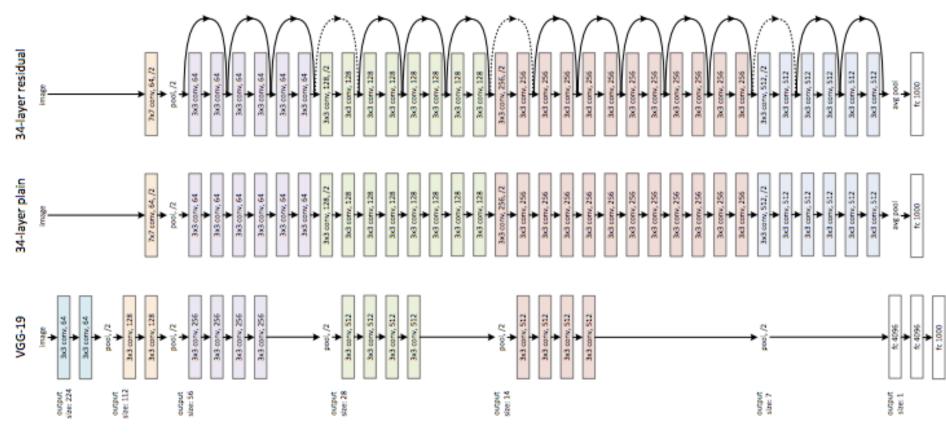


Table 2: Number of parameters (in millions).

Network	A,A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

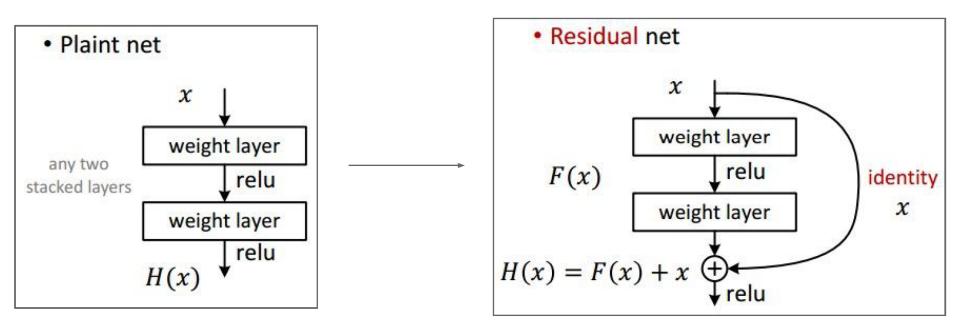
CNN Architectures: ResNet

[He et al. 2015]

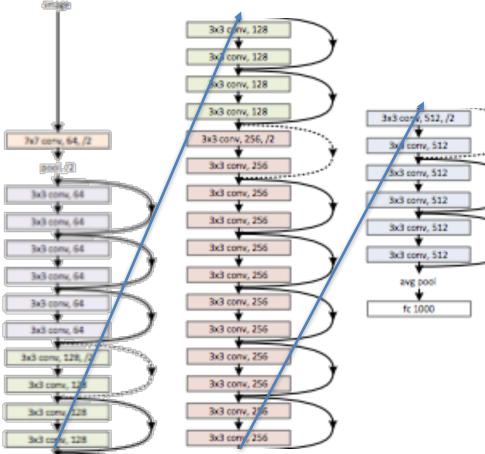


CNN Architectures: ResNet

[He et al. 2015]

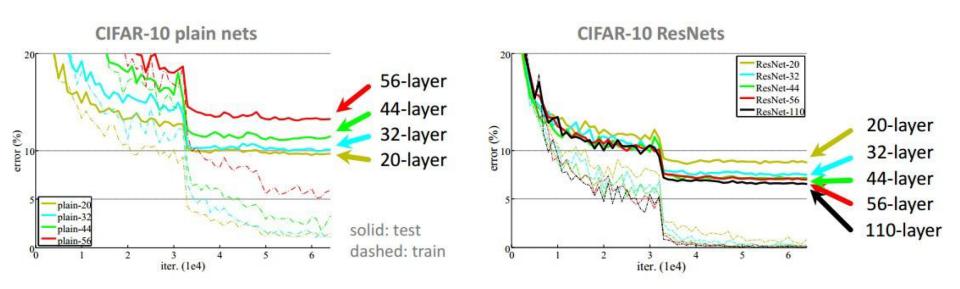


34-layer residual CNN Architectures: ResNet



- Batch norm after every Conv Layer
- Xavier/2 init by He et al.
- SGD + Momentum (0.9)
- Learning rate 0.1, divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 1e-5
- No dopout!

CNN Architectures



Slide by Li/Karpathy/Johnson

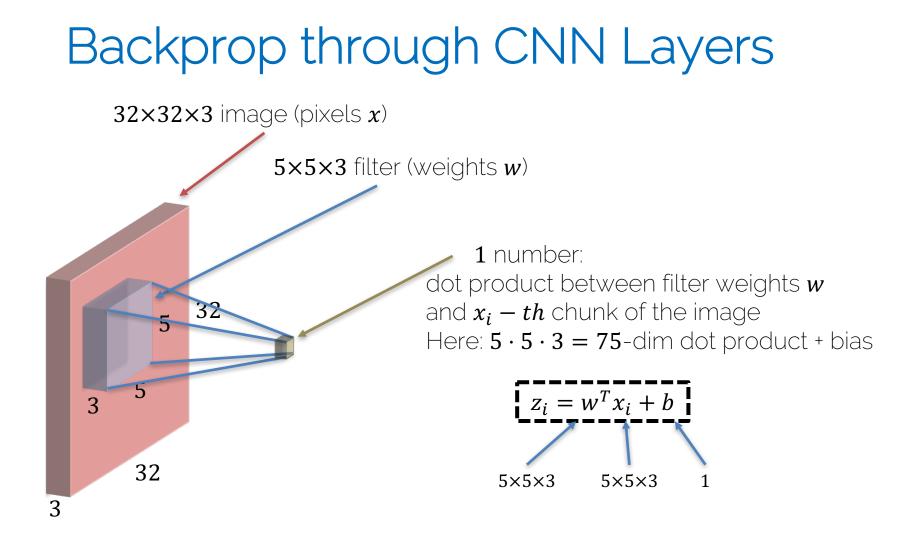
CNN Architectures: ResNet [He et al. 2015]

• What Conv Layers do spatially, ResNet and Inception models do across layers (kind of)

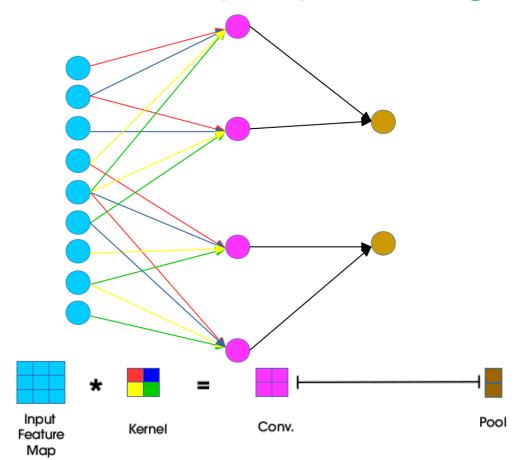
MSRA @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

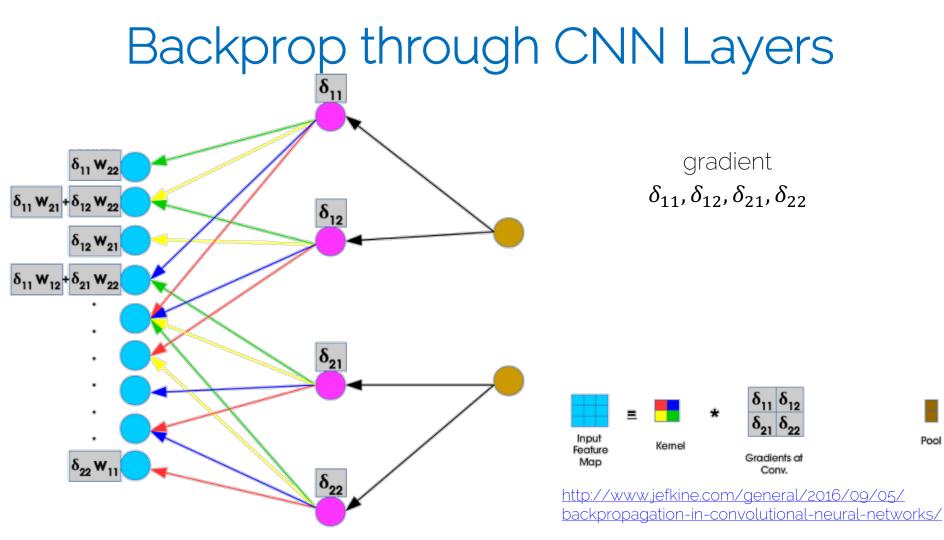
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd



Backprop through CNN Layers



http://www.jefkine.com/general/2016/09/05/ backpropagation-in-convolutional-neural-networks/



Backprop through CNN Layers

0 0 $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ $w_{0,0}$ 0 $w_{0,1}$ $w_{0,2}$ $w_{1,0}$ $w_{1,1}$ $w_{1,2}$ $w_{2,0}$ $w_{2,1}$ $w_{2,2}$ $C = \left(\begin{array}{cccccc} 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 \\ 0 & 0 & 0 & 0 & w_{0,0} \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$ 0 0 $w_{2,1}$ $w_{1,0}$ $w_{1,1}$ $w_{1,2}$ $w_{2,0}$ $w_{2,2}$ 0 $w_{0,1}$ 0 $w_{1,2}$ 0 $w_{0,2}$ $w_{1,0}$ $w_{1,1}$ $w_{2,0}$ $w_{2,1}$ $w_{2,2}$ 0 0 0 $w_{1,0}$ $w_{0,0}$ $w_{0,1}$ $w_{1,1}$ $w_{1,2}$ $w_{2,0}$ $w_{2,2}$ $w_{0,2}$ $w_{2,1}$

Input: 16-dim vector

Output: 4-dim vector (will be re-shaped as 2 x 2 eventually)

Backward pass is simply multiplying with \mathcal{C}^T

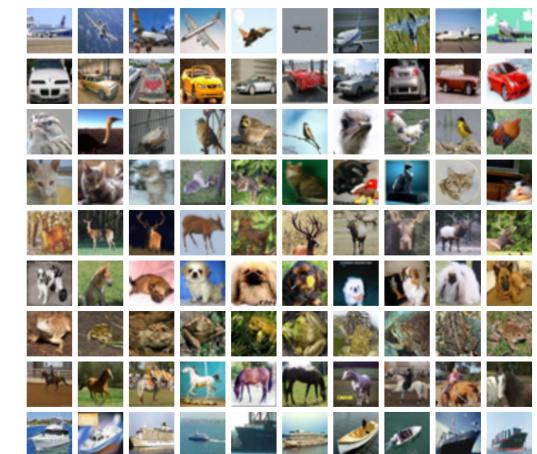
Task for at home: think it through on a piece of paper ©

[Dumoulin et al. 16]

Using Convolutional Neural Networks

Classification on CIFAR

- airplane
- automobile
- bird
- cat
- deer
- dog
- frog
- frog
- horse
- ship



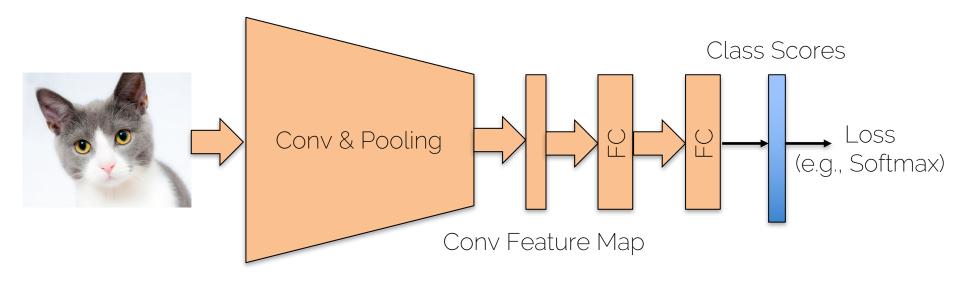
60k 32 x 32 RGB images 6k images per class 50k training and 10k test

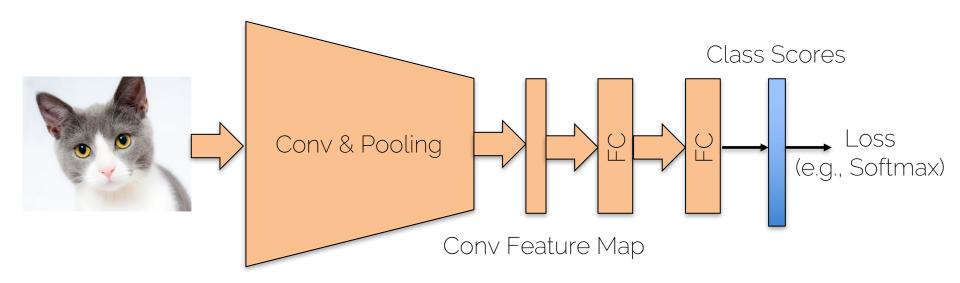
[Krizhevsky 09]

Classification on CIFAR

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

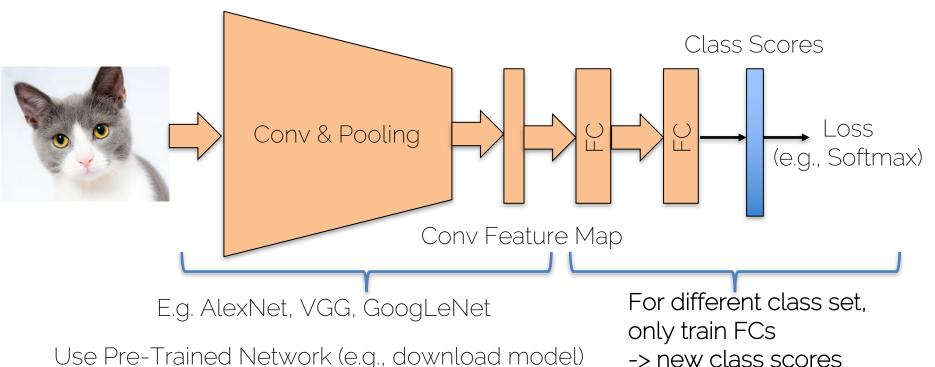
State of the art on CIFAR-10 is > 90% It has isolated objects, so it's the 'straight-forward' applications of CNNs





E.g. AlexNet, VGG, GoogLeNet

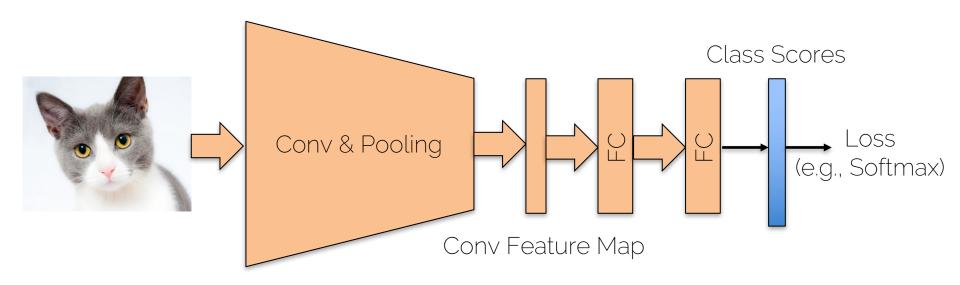
Train on ImageNet once (10 mio images) -> 1-2 weeks



-> less training data

-> faster training

Use Pre-Trained Network (e.g., download model) -> keep ConvLayers fixed



Always think about these strategies!

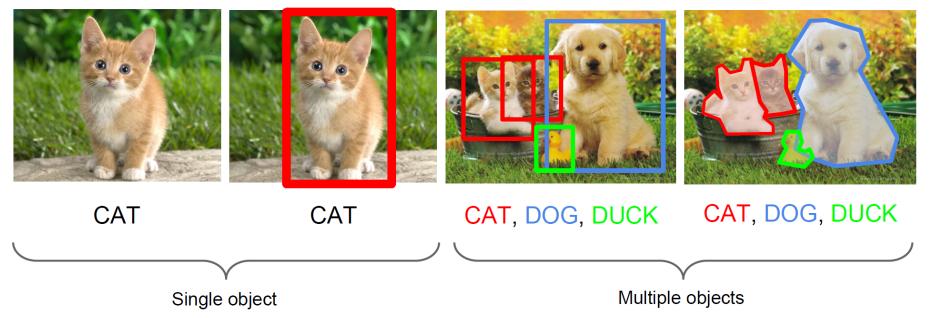
- Try to start with existing, pre-trained models
- In the assignments, don't try to train ImageNet model from scratch

Classification

Classification + Localization

Object Detection

Instance Segmentation



Classification

Classification + Localization

Object Detection

Instance Segmentation

CIFAR 10 + "raw" CNN ©

Object Detection

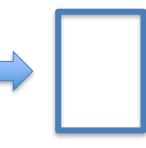
Classification

Classification + Localization

Instance

Segmentation

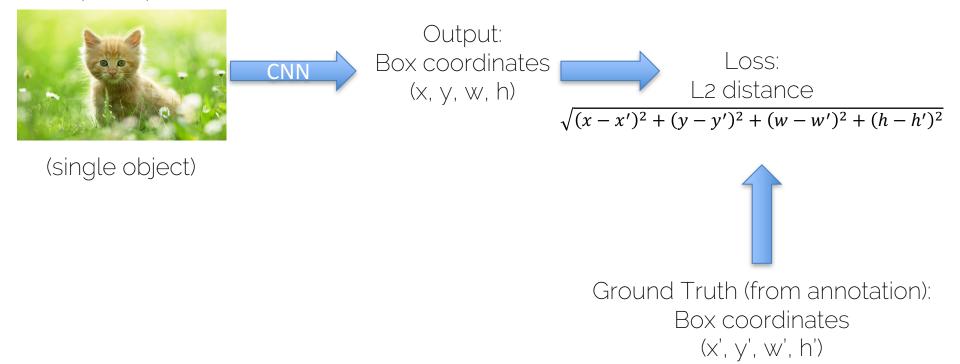
- Classification:
 - Input: image
 - Output: class label
 - Loss of class accuracy
- Localization:
 - Input: image
 - Output: box in image (x, y, w, h)
 - Loss over IoU (intersection over union)
- Classification + Localization: combine both



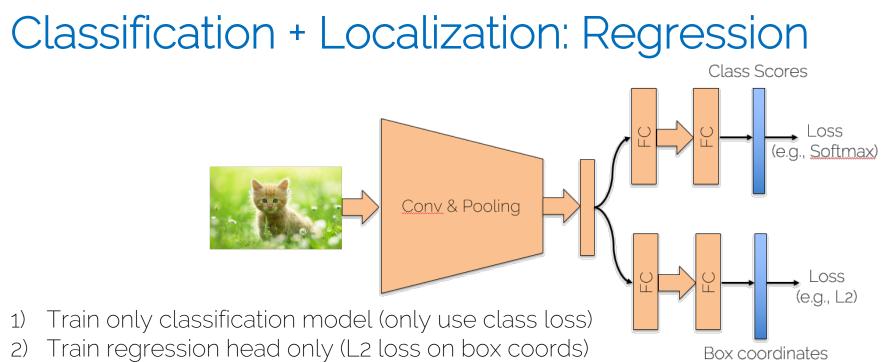
(x, y, w, h)

Localization as Regression

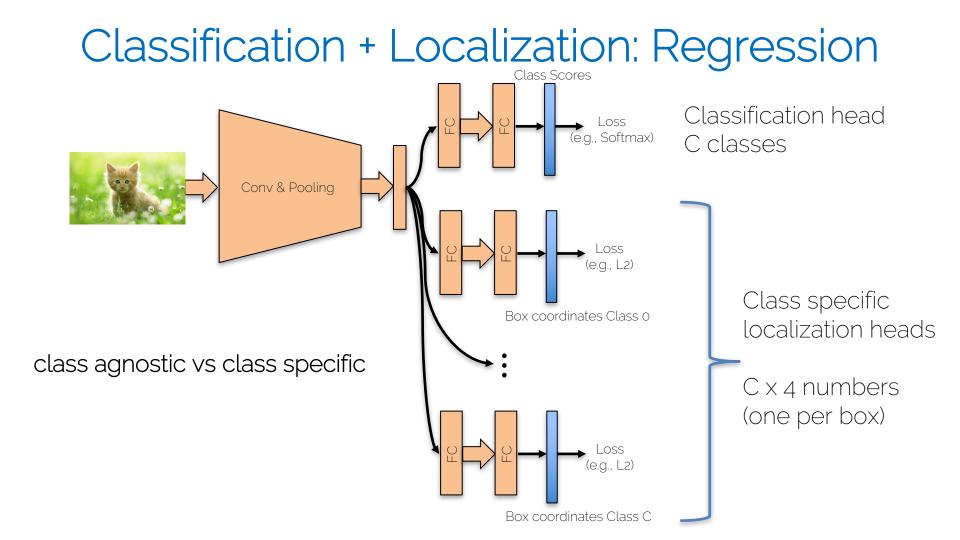
Input: input



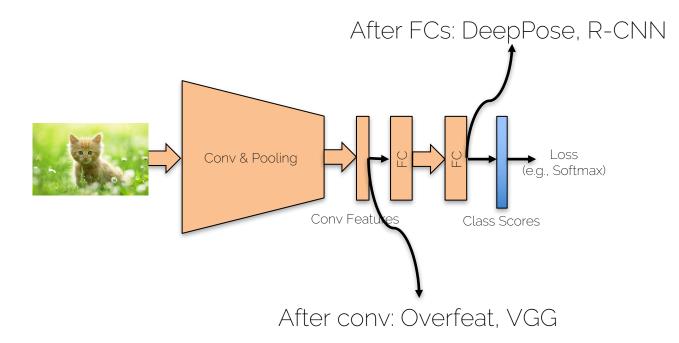
Classification + Localization: Regression **Class Scores** Loss (e.g., Softmax) Conv & Pooling OSS (e.g., L2) Multiple "Heads"; here: - Classification head - Localization head Box coordinates



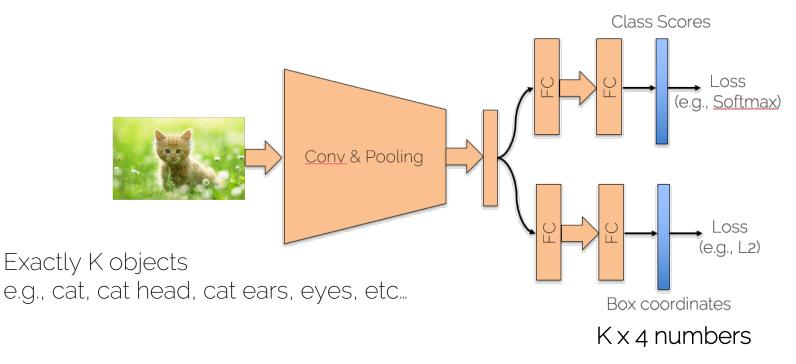
3) At test time use both heads



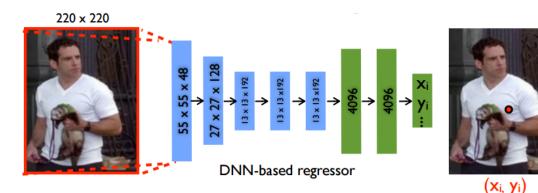
• Where to attach the regression head?



"Hack" for localization multiple, bit fixed number of objects



- Human Pose Estimation
 - Person has K joints (similar to Kinect SDK)
 - Regress (x, y) for each joint from last FC of AlexNet
 - Post Refinment, use Normalized Device Coords



[Toshev and Szegedy: "DeepPose" 14]

• Adding regression is very simple and efficient!

• Think about smart architecture design

• Can combine different Conv parts and "Heads"

1. Train classification network on specific object(s)

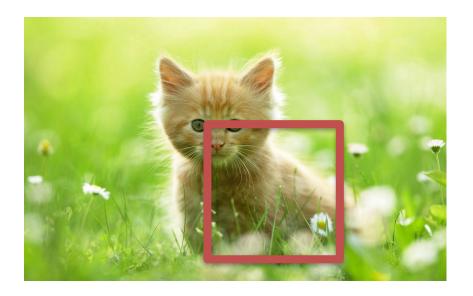
2. Select random bounding box: check class score

3. Brute force testing: everywhere at every scale

4. Take location with highest class score

Class score (cat): Box location 0 -> score 0.02

Class score (cat): Box location 0 -> score 0.02 Box location 1 -> score 0.2



Class score (cat):	
Box location 0	-> score 0.02
Box location 1	-> score 0.2
Box location 2	-> score 0.42

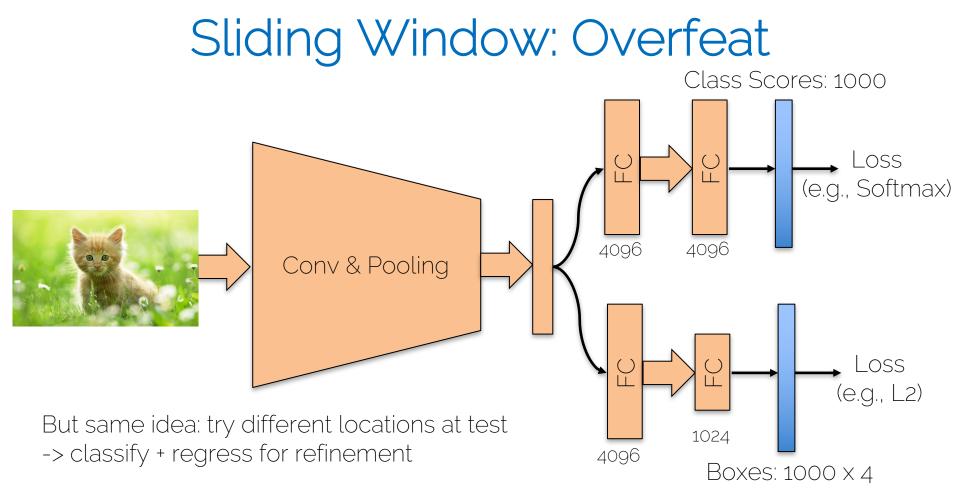
Class score (cat): Box location 0 -> score 0.02 Box location 1 -> score 0.2 Box location 2 -> score 0.42 Box location 3 -> score 0.31

Class score (cat): Box location 0 -> score 0.02 Box location 1 -> score 0.2 Box location 2 -> score 0.42 Box location 3 -> score 0.31 Box location 4 -> **score 0.8**

Take winning box location as result

- Problem:
 - Slow testing, needs a lot of tests to find a good one.
 - Need to get *really* lucky to find the *exact* box
 - Harder to train, since classifier does not know about loc

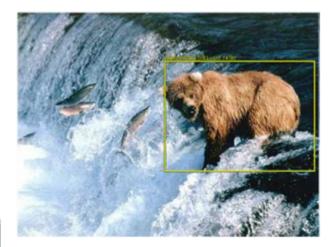
- Idea:
 - Combine with regressor for refinenment
 - Train both



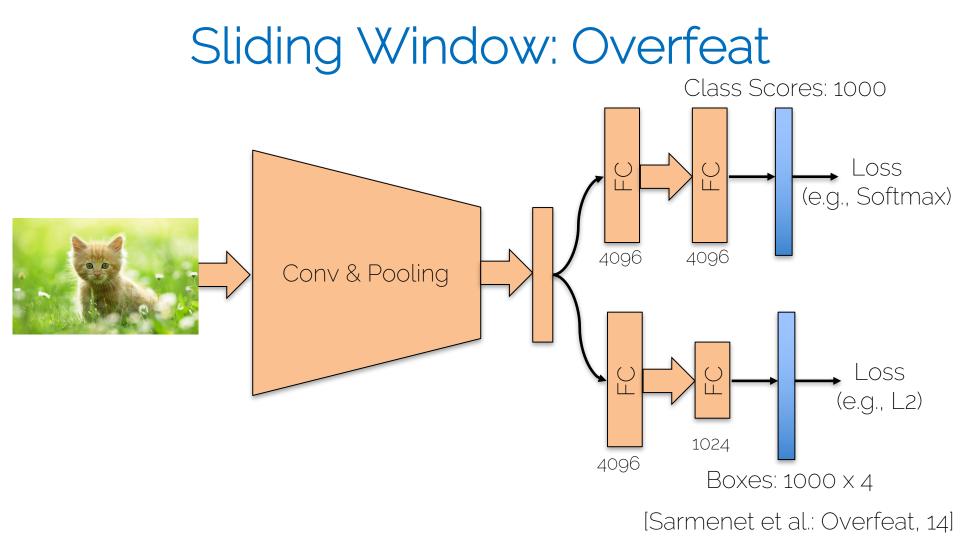


1) Window positions + score maps

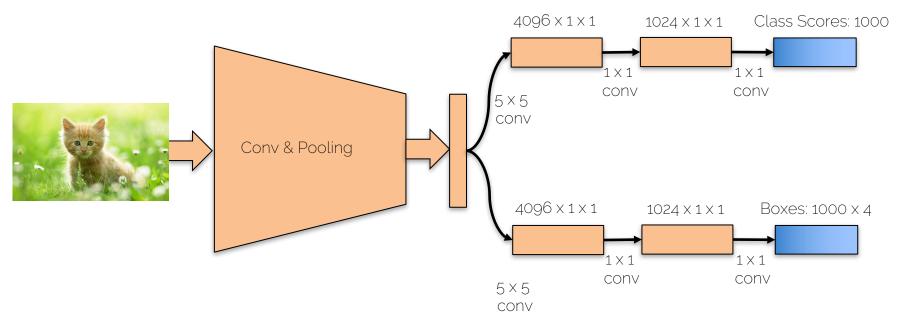
2) Box regression



3) Final bounding box prediction



Efficient sliding by converting FCs into convs

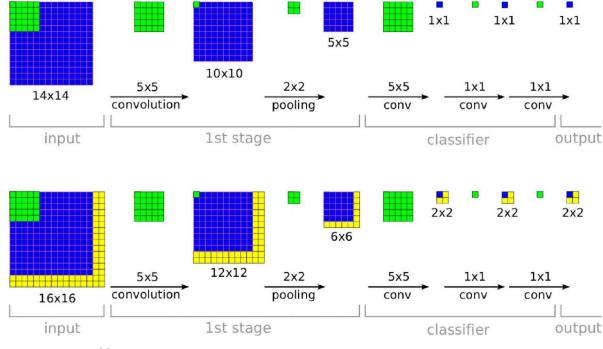


Convs are great in terms of compute (weight sharing!)

But what's the other main advantage?

Architecture is (somewhat) invariant to the image size

Training: 14x14 image 1 x 1 classifier output

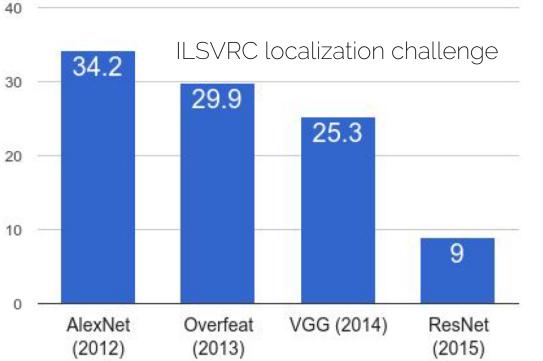


Testing: 2x2 image 2 x 2 classifier output

It needs to handle different box sizes!

ImageNet Classification +

Localization Error (Top 5)



Overfeat: Multiscale conv regression with box merging

VGG: Mostly the same, but better network (also fewer scales and location, gain by better features)

ResNet: Crazy network, and different localization method (region proposals, RPN)

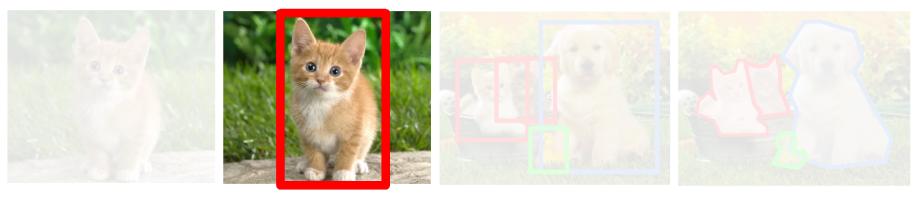
Using CNNs in Computer Vision

Classification

Classification + Localization

cation zation Object Detection

Instance Segmentation



Regression and/or sliding window

Credit: Li/Karpathy/Johnson

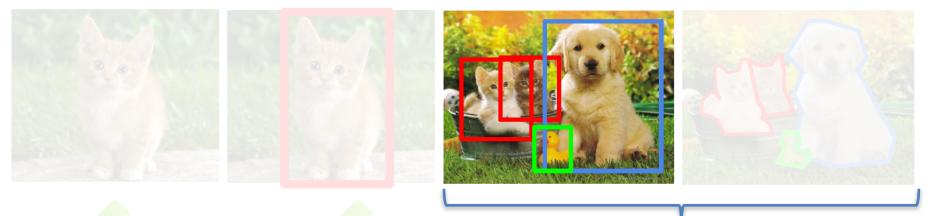
Using CNNs in Computer Vision

Classification

Classification + Localization

Object Detection

Instance Segmentation



CIFAR 10 + "raw" CNN ©

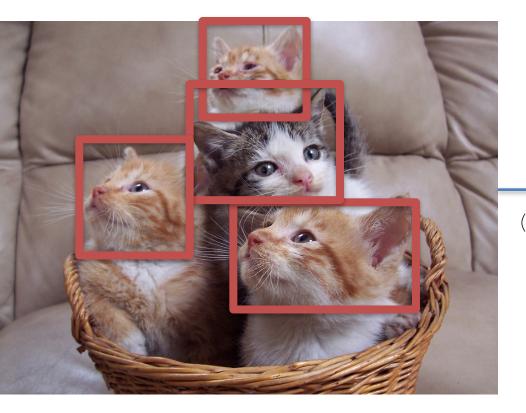
Regression and/or sliding window Multiple objects! (but we don't know how many)

Object Detection as Regression?

Location (x, y, w, h) for car Location (x, y, w, h) for motor bike

Regress 8 numbers
(distributed over 1 more multiple heads)

Object Detection as Regression?



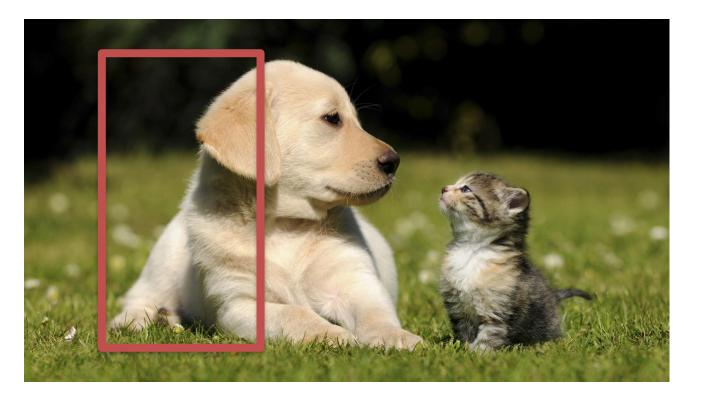
Location (x, y, w, h) for cat 1 Location (x, y, w, h) for cat 2 Location (x, y, w, h) for cat 3 Location (x, y, w, h) for cat 4

Regress 16 numbers(distributed over 1 more multiple heads)

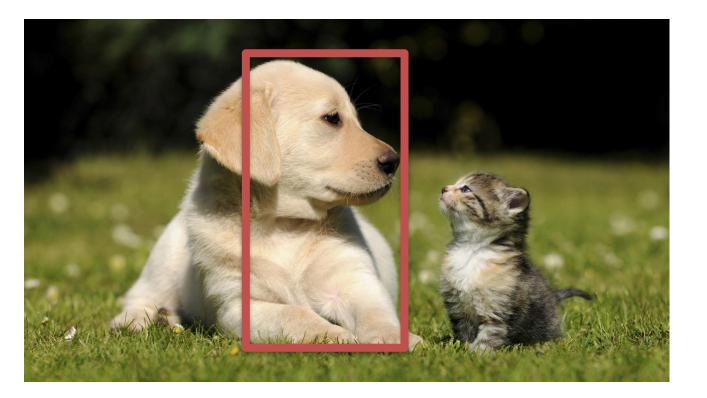
Object Detection as Regression?

What now? It is actually possible via regression (using RNNs -> more later)

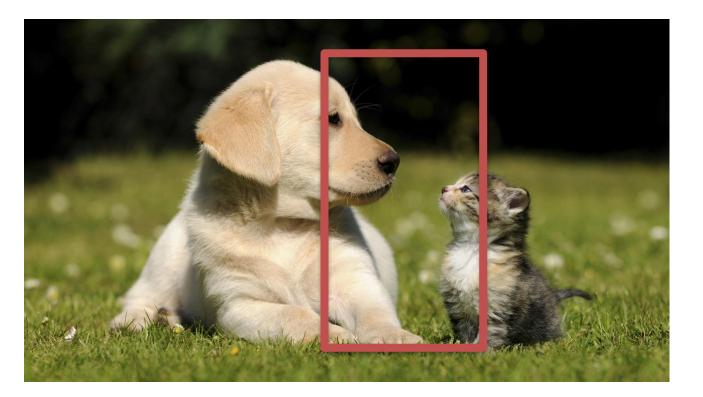
2 classes Dog: no Cat: no



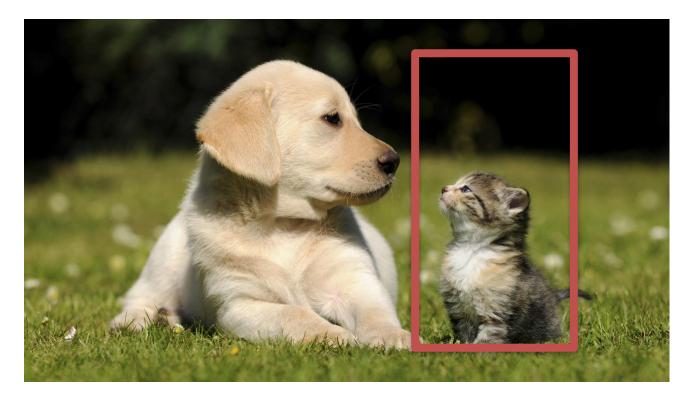
2 classes Dog: maybe Cat: no



2 classes Dog: yes Cat: no



2 classes Dog: maybe Cat: maybe



2 classes Dog: no Cat: yes

Classification as Detection

• Problem: need to test at every position and scale

- Solutions
 - Just do it 🕲 but it takes time at test
 - Smarter, but fewer, proposals
 - E.g., in videos you can use results from prev. frames
 - Train region proposals!

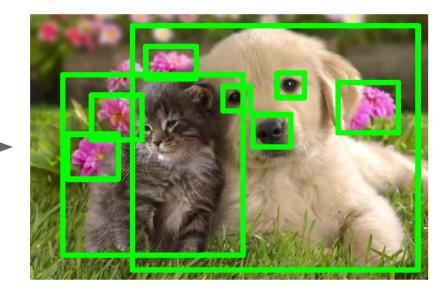
Main Idea:

- Running a CNN at every possible location is too costly

- Use a cheap proposal method

- Run 'expensive' CNN only at selected regions

Region Proposals



Region Proposals: Selective Search

Bottom-up segmentation, merging at multiple scales

Convert regions to boxes

[Uijlings et al. 13, Selective Search for Object Recognition]

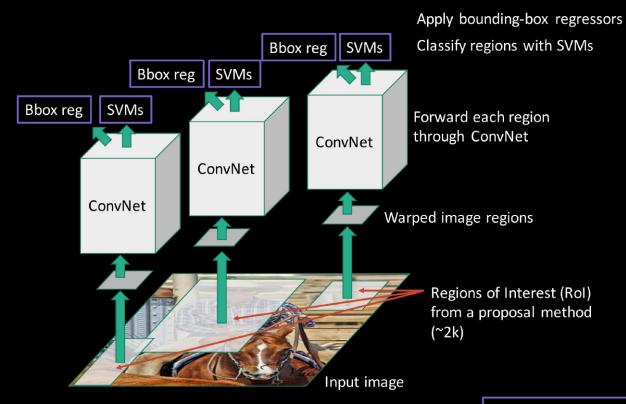
Region Proposals: Lots of Options

Method	Approach	Outputs	Outputs	Control	Time	Repea-	Recall	Detection
		Segments	Score	#proposals	(sec.)	tability	Results	Results
Bing [18]	Window scoring		\checkmark	\checkmark	0.2	***	*	•
CPMC [19]	Grouping	\checkmark	\checkmark	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		\checkmark	\checkmark	0.3	**	***	***
Endres [21]	Grouping	\checkmark	\checkmark	\checkmark	100	-	* * *	**
Geodesic [22]	Grouping	\checkmark		\checkmark	1	*	***	**
MCG [23]	Grouping	\checkmark	\checkmark	\checkmark	30	*	***	* * *
Objectness [24]	Window scoring		\checkmark	\checkmark	3		*	
Rahtu [25]	Window scoring		\checkmark	\checkmark	3	•		*
RandomizedPrim's [26]	Grouping	\checkmark		\checkmark	1	*	*	**
Rantalankila [27]	Grouping	\checkmark		\checkmark	10	**		**
Rigor [28]	Grouping	\checkmark		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	\checkmark	\checkmark	\checkmark	10	**	***	* * *
Gaussian				\checkmark	0	•	•	*
SlidingWindow				\checkmark	0	***	•	·
Superpixels		\checkmark			1	*		•
Uniform				\checkmark	0		•	

Most of them are not based on DL. Why?

[Hosang et al. 15, Overview of object proposals]

Putting it Together: R-CNN



 Run region proposal (e.g., selective search)

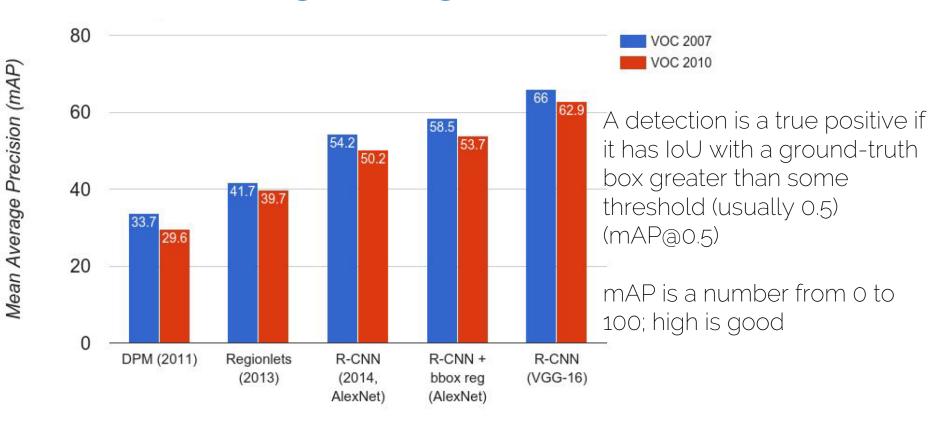
2) Warp (i.e., re-scale, re-size) to a fixed image size

 This fixed output is fit into a CNN with class + regression head, which corrects for slightly off proposals

Girshick et al. CVPR14.

Post hoc component

Putting it Together: R-CNN



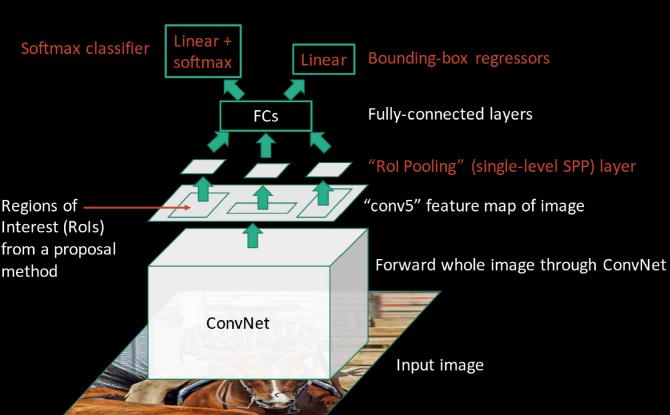
[Wang et al. 13, "Regionlets for Generic Object Detection"]

R-CNN: Training

- Unfortunately, training is fairly complex
 - Series of pre-training and fine-tuning tasks for classification, detection, etc.
 - Extraction of intermediate features that are cached that are pretty big for SVM classification (also space issue)
 - SVMs are not jointly trained with CNN
 - It's also extremely slow to train

Fast R-CNN (testing)

Fast R-CNN (test time)

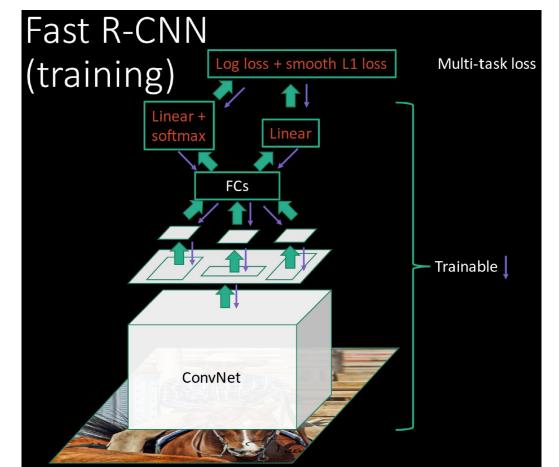


Solves test-time issue due to independent CNN forward passes

-> now one pass that shares computation of conv layers between proposals with in an image

[Girshick 15, Fast R-CNN]

Fast R-CNN (training)



Solves training time issue: 1) CNN not updated with SVM losses. 2) Complex training pipeline

-> Just train whole thing end-to-end

[Girshick 15, Fast R-CNN]

Fast R-CNN Results

	R-CNN	Fast R-CNN	
Training Time:	84 hours	9.5 hours	
(Speedup)	1x	8.8x	
Test time per image	47 seconds	0.32 seconds	
(Speedup)	1x	146x	
mAP (VOC 2007)	66.0	66.9	

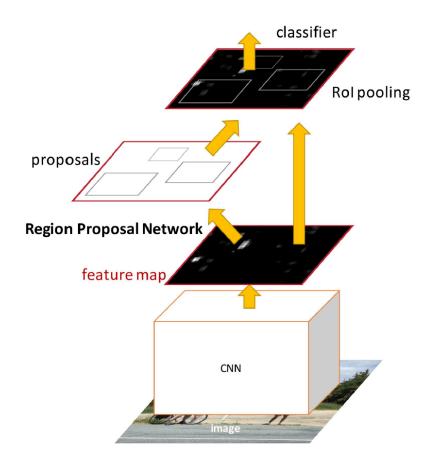
Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN

• Issue: Test-time speeds don't include object proposals

	R-CNN	Fast R-CNN	
Test time per image	47 seconds	0.32 seconds	
(Speedup)	1x	146x	
Test time per image with Selective Search	50 seconds	2 seconds	
(Speedup)	1x	25x	

Faster R-CNN



Solution: make the CNN also do region proposals!

Insert a Region Proposal Network (RPN) after last conv layer

RPN produces region proposals (one shot) -> no need for external proposals

After RPN, region of interest pooling, and use similar classifier and bbox regressor like Fast R-CNN

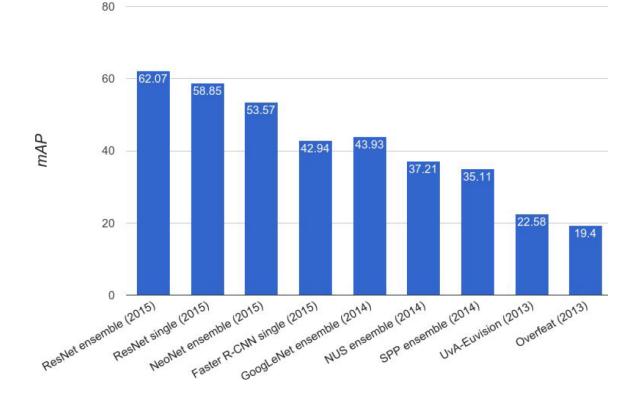
[Girshick 15, Faster R-CNN]

Faster R-CNN

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

ImageNet Detection 2013 - 2015

ImageNet Detection (mAP)



Credit: Li/Karpathy/Johnson

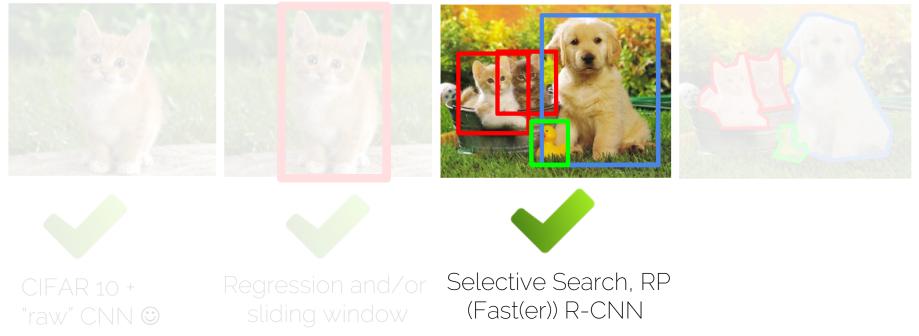
Using CNNs in Computer Vision

Classification

Classification + Localization

Object Detection

Instance Segmentation



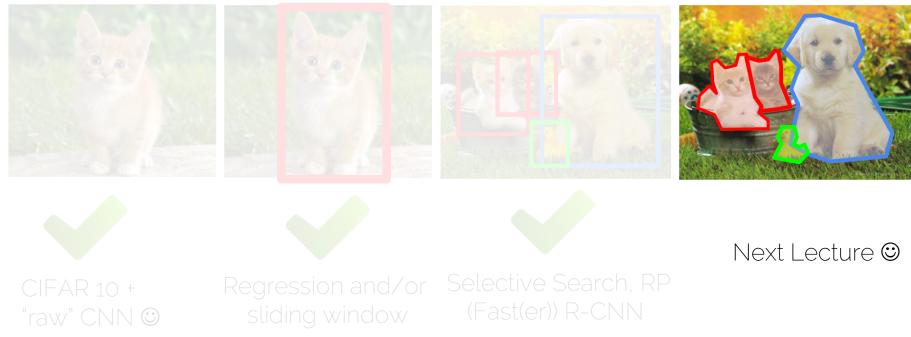
Using CNNs in Computer Vision

Classification

Classification + Localization

Object Detection

Instance Segmentation



Credit: Li/Karpathy/Johnson

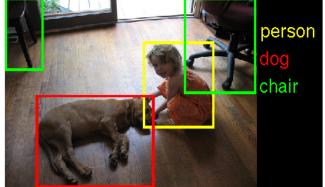
Using CNNs in Computer Vision

- We have CNNs (Convs, Pooling, FCs, Losses)
- We can employ them for classification
- We can employ them for regression

- Somewhat oversimplified: the "rest" is smart architectures and application of these tools
 - > of course it's more complicated O

Important Datasets to Know

CIFAR-10: single object, centered, Krizhevsky et al. MNIST: handwritten digits, LeCun et al. Pascal VOC, 20 classes, 10k images, Everingham et al. ImageNet: 10 mio images, Deng et al. MSCoco, 300k images, Lin et al. 15



Administrative Things

 Thursday June 29th: More about CNN Architectures – lots of cool stuff: e.g., Dense Pixel Classification!

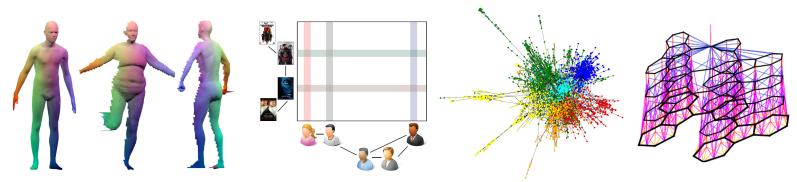
- Tomorrow: Project proposals start!
 - Example proposals
 - Guidelines: how much is doable?

• Dating pool: Finalize forming teams (e.g., on Moodle!)

Special Course:

Geometric deep learning on graphs and manifolds Going beyond Euclidean data Michael Bronstein

USI Lugano / Tel Aviv University / Intel Perceptual Computing / TUM IAS



Preliminary: scheduled for Fri 30/6 and 7/7 (2pm to 4pm) -> in our tutorial room