
Lecture 8 Recap

Using CNNs in Computer Vision

• We have CNNs (Convs, Pooling, FCs, Losses)
• We can employ them for classification
• We can employ them for regression

• Somewhat oversimplified: the “rest” is smart
architectures and application of these tools
– > of course it’s more complicated J

Convolution Layers: Dimensions

32

32
3

28

28
5

24

24
8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5	filters
5×5×3

8	filters
5×5×5

12	filters
5×5×8

Input Image

20

Convolutional Neural Network

Convolutional Neural Network

Slide by LeCun

CNN Architectures

How to Train in Practice?

Conv & Pooling

Conv Feature Map

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

E.g. AlexNet, VGG, GoogLeNet

Use Pre-Trained Network (e.g., download model)
-> keep ConvLayers fixed

For different class set,
only train FCs
-> new class scores
-> less training data
-> faster training

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Classification on CIFAR

60k 32 x 32 RGB images
6k images per class
50k training and 10k test

[Krizhevsky 09]

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

CIFAR 10 +
“raw” CNN J

CIFAR 10 +
“raw” CNN J

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Classification + Localization: Regression

Conv & Pooling

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

F
C

F
C

Box coordinates

Loss
(e.g., L2)

Multiple “Heads”; here:
- Classification head
- Localization head

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42
Box location 3 -> score 0.31

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42
Box location 3 -> score 0.31
Box location 4 -> score 0.8

Take winning box location as result

Classification + Localization: Sliding Window

Sliding Window: Overfeat

[Sarmenet et al.: Overfeat, 14]

1) Window positions + score maps

2) Box regression

3) Final bounding box
prediction

Sliding Window: Overfeat

Efficient sliding by converting FCs into convs

Conv & Pooling

Class Scores: 1000

Boxes: 1000 x 4

[Sarmenet et al.: Overfeat, 14]

4096 x 1 x 1

5 x 5
conv

1024 x 1 x 1

1 x 1
conv

1 x 1
conv

4096 x 1 x 1

5 x 5
conv

1024 x 1 x 1

1 x 1
conv

1 x 1
conv

ImageNet Classification +
Localization

ILSVRC localization challenge

Credit: Li/Karpathy/Johnson

Overfeat: Multiscale conv
regression with box merging

VGG: Mostly the same, but
better network (also fewer
scales and location, gain by
better features)

ResNet: Crazy network, and
different localization method
(region proposals, RPN)

Important Datasets to Know
CIFAR-10: single object, centered, Krizhevsky et al.
MNIST: handwritten digits, LeCun et al.
Pascal VOC, 20 classes, 10k images, Everingham et al.
ImageNet: 10 mio images, Deng et al.
MS-COCO, 300k images, Lin et al. 15

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

CIFAR 10 +
“raw” CNN J

Regression and/or
sliding window

CIFAR 10 +
“raw” CNN J

Regression and/or
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Multiple objects!
(but we don’t know how many)

Object Detection as Classification

2 classes

Dog: no

Cat: no

Object Detection as Classification

2 classes

Dog: maybe

Cat: no

Object Detection as Classification

2 classes

Dog: yes

Cat: no

Object Detection as Classification

2 classes

Dog: maybe

Cat: maybe

Object Detection as Classification

2 classes

Dog: no

Cat: yes

Region Proposals

Credit: Li/Karpathy/Johnson

Region Proposals: Selective Search

[Uijlings et al. 13, Selective Search for Object Recognition]

Convert regions
to boxes

Bottom-up segmentation, merging at multiple scales

Putting it Together: R-CNN

1) Run region proposal
(e.g., selective search)

2) Warp (i.e., re-scale,
re-size) to a fixed
image size

3) This fixed output
is fit into a CNN
with class + regression
head, which corrects
for slightly off
proposals

Fast R-CNN (testing)

[Girshick 15, Fast R-CNN]

Solves test-time issue
due to independent
CNN forward passes

-> now one pass that
shares computation of
conv layers between
proposals with in an
image

Fast R-CNN (training)

[Girshick 15, Fast R-CNN]

Solves training time
issue: 1) CNN not
updated with SVM
losses. 2) Complex
training pipeline

-> Just train whole
thing end-to-end

Faster R-CNN

Solution: make the CNN also
do region proposals!

Insert a Region Proposal Network (RPN)
after last conv layer

RPN produces region proposals (one shot)
-> no need for external proposals

After RPN, region of interest pooling, and
use similar classifier and bbox regressor
like Fast R-CNN

[Girshick 15, Faster R-CNN]

Faster R-CNN

Credit: Li/Karpathy/Johnson

ImageNet Detection 2013 - 2015

Credit: Li/Karpathy/Johnson

Image Segmentation
and Instance

Segmentation

CIFAR 10 +
“raw” CNN J

Regression and/or
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Selective Search, (D)RP
(Fast(er)) R-CNN

Selective Search, RP
(Fast(er)) R-CNN

CIFAR 10 +
“raw” CNN J

Regression and/or
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Semantic Segmentation

Predict class label for every pixel
(i.e., dense pixel labeling)

No differentiation between
instances

I.e., all objects of the same class
receive same class label

Traditional computer vision task

[Shotton et al. 07] TextonBoost

Instance Segmentation

Detect instances, classify category,
label pixels of each instance;

Distinguish between instances within
a category;
e.g., elephant1, elephant2, etc.

Simultaneous detection and
segmentation (SDS)

MS COCO is core dataset
-> lots of work around it

[Dai et al. 15] Instance-aware Semantic Segmentation

Semantic vs Instance Segmentation

[Lin et al. 15] Microsoft COCO: Common Objects in Context

(d)	Instance	segmentation

Semantic Segmentation (Patch-based)

Extract patch

CNN

Feed into CNN Classify center pixel

“Cow”

Semantic Segmentation (Patch-based)

CNN

Feed into CNN Classify center pixel

Run CNN for every pixel!

Extract patch

Semantic Segmentation (Patch-based)

CNN

Feed into CNN Classify center pixel

Run CNN for every pixel!

Extract patch

Semantic Segmentation (Patch-based)

CNN

Feed into CNN Classify center pixel

Run CNN for every pixel!

Extract patch

Semantic Segmentation (Patch-based)

Extract patch

CNN

Feed into CNN Classify center pixel

“Cow”

Run CNN for every pixel!

Possibly run a CRF at the end

Semantic Segmentation (Patch-based)

• Extract patch from image for every pixel
• Run every patch independently through a CNN

• Easy architecture: just classify -- use VGG/ResNet
• Easy to train: just use pixel center label for patch
• Expensive at test time

Semantic Segmentation

pixels in
width x height x RGB

pixels out
width x height x classes

co
nv

co
nv

co
nv

co
nv

Just convs & activations

Fully Convolutional Network

Semantic Segmentation (Multi-
Scale)

[Farabet et al. 13] Learning Hierarchical Features of Scene Labeling (Slide by Li/Karpathy/Johnson)

Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Conv /pool part + learnable upsampling

Learnable Upsampling: Deconvolution

Convolution
no padding, no stride

https://github.com/vdumoulin/conv_arithmetic

Transposed convolution
no padding, no stride

Learnable Upsampling: Deconvolution

Convolution
padding, stride

https://github.com/vdumoulin/conv_arithmetic

Transposed convolution
padding, stride

Learnable Upsampling: Deconvolution

• “Deconvolution” is not a great name, but widely used

• Also named:
– Upconvolution
– Convolution transpose
– Backward strided convolution
– ½ strided convolution

Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Conv /pool part + learnable upsampling

Semantic Segmentation (FCN)

• Run “fully convolutional” network (FCN)

• Take all pixels at once as input

• Bottle neck + learnable upsampling

• Predict class for every pixel simultaneously

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Skip connections -> better results

“tabby	
cat”

1000-dim	
vector

<	1	
millisecond

FAN: Convnets Perform
Classification

end-to-end	learning

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

~1/10	
second

end-to-end	learning

???

FCN: Lots of pixels, Little Time?

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

“tabby	
cat”

FCN: a Classification Network

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

FCN: Becoming Fully Convolutional

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

FCN: Becoming Fully Convolutional

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

FCN: Upsampling Output

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

FCN: End-to-end, Pixels-to-pixels Network

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

conv,	
pool,

nonlineari
ty

upsampli
ng pixelwise

output	+	loss

FCN: End-to-end, Pixels-to-pixels Network

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

FCN: Architecture

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

Semantic Segmentation:
Upsampling

[Noh et al. 15] Learning Deconvolution Network for Semantic Segmentation

VGG Transposed VGG

Instance Segmentation

Detect instances, classify category,
label pixels of each instance;

Distinguish between instances within
a category;
e.g., elephant1, elephant2, etc.

Simultaneous detection and
segmentation (SDS)

MS COCO is core dataset
-> lots of work around it

[Dai et al. 15] Instance-aware Semantic Segmentation

Instance Segmentation

[Hariharan et al. 14] Simultaneous Detection and Segmentation (Slide by Li/Karpathy/Johnson)

Similar to R-CNN,
but with segments

Instance Segmentation: Hypercolumns

[Hariharan et al. 15] Hypercolumns for Object Segmentation and Fine-grained Localization (Slide by Li/Karpathy/Johnson)

Instance Segmentation: Cascades

[Dai et al. 15] Instance-aware Semantic Segmentation via Multi-task Network Cascades (Slide by Li/Karpathy/Johnson)

Instance Segmentation: Cascades

[Dai et al. 15] Instance-aware Semantic Segmentation via Multi-task Network Cascades (Slide by Li/Karpathy/Johnson)

Input Prediction Ground Truth

Segmentation Overview
• Semantic segmentation

– Classify all pixels

– Fully convolutional models, downsample, then upsample
– Learnable upsampling (deconvolution)
– Skip connection can help (more later)

• Instance segmentation
– Detect instance, generate mask
– Similar pipelines to object detection

(d)	Instance	segmentation

Autoencoder

Conv Deconv

Remember: Deconvolution

Convolution
no padding, no stride

https://github.com/vdumoulin/conv_arithmetic

Transposed convolution
no padding, no stride

Reconstruction: Autoencoder

Conv Deconv

Input Image Output Image

Reconstruction
Loss (often L2)

Training Classifiers vs Autoencoders
• Supervised Learning

– Data (x, y)
x is data, y is label

– Goal: learn mapping x -> y

– Example: classifier

• Unsupervised Learning
– Data (x)

only data, no labels
– Goal: learn structure (e.g.,

clustering)

– Example: AE (autoencoder)

Training Autoencoders

Latent space z
dim (z) < dim (x)

In
p

u
t x

R
ec

o
ns

tr
u

ct
io

n
x’

Input images

Reconstructed images

Testing Autoencoders

Latent space z
dim (z) < dim (x)

“Test time”:
-> reconstruction from

‘random’ vector

R
ec

o
ns

tr
u

ct
io

n
x’

Reconstructed images

Typically pretty blurry… why?

Autoencoder vs PCA

Principal Component Analysis
(low rank approximation)

What is the
connection between

Autoencoder and
PCA?

Autoencoder: Use Cases

• Clustering
• Feature learning
• Embeddings

Pre-train AE -> fine-tune with small labeled data
figure by Li/Karpathy/Johnson

Autoencoder: Use Cases

Embedding of
MNIST numbers

Autoencoder: Use Cases

3D shape
embedding

Variational Autoencoders (VAE)

http://kvfrans.com/variational-autoencoders-explained/

KL-Div Loss in latent space, forcing a unit Gaussian distribution
-> now the latent vector becomes a distribution

Variational Autoencoders (VAE)

• After training, generate random samples

Sample from the distribution
(e.g., unit Gaussian

Variational Autoencoders (VAE)

Autoencoder vs Variational Autoencoder

Autoencoder Variational Autoencoder Ground Truth

https://github.com/kvfrans/variational-autoencoder

Autoencoder Overview

• Autoencoders (AE)
– Reconstruct input
– Unsupervised learning
– Latent space features are useful

• Variational Autoencoders (VAE)
– Probability distribution in latent space (e.g., Gaussian)
– Sample from model to generate output

Discriminative vs Generative Tasks

• Discriminative Tasks:
– Classification
– Localization / Detection
– Matching
– Low-dimensional output

• Generative Tasks (more next lecture!)
– Generate images / videos /shapes
– High-dimensional output

Administrative Things

• Thursday July 6th: Multi-Dimensional Convolutions
(e.g., 3D), GANs, Visualization!

• Tomorrow: Short Proposal Review
– What went right and what went wrong?
– Michael Bronstein “Geometric Deep Learning” course

Special	Course:

Geometric	deep	learning	on	graphs	and	manifolds
Going	beyond	Euclidean	data

Michael	Bronstein
USI	Lugano	/	Tel	Aviv	University	/	Intel	Perceptual	Computing	/	TUM	IAS

Preliminary: scheduled for Fri 30/6 and 7/7 (2pm to 4pm)
-> in our tutorial room

