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Organizational Setup
What is this course about?

Parallel Programming using CUDA
Computer Vision Basics
Work on a cool final project

What will you learn?
How to program parallel processors
Acquire the technical knowledge to understand how CUDA
works
Apply this knowledge efficiently to implement computer
vision algorithms and gain a massive speedup
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Organizational Setup
Time line:

Lecture (September 11-15)
2–3h lectures !!!attendance is mandatory!!!
Followed by programming exercises until open end

Project (September 15 - October 8)
Implement an advanced application assigned to your group
Group of three students

Demo day (October 9)
Prepare a presentation and demo
Showing off what your group achieved throughout the
project phase
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Organizational Setup
Lecture:

Starts at 10 a.m. sharp!
Don’t forget: !!!attendance is mandatory!!!
First part of lecture corresponds to CUDA
Short break of 15 min
Second part of lecture corresponds to
mathematics/computer vision
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Organizational Setup
Exercises:

Starts after the second part of the lecture
Will be supervised until 4/5 p.m.
Stay as long as you want to solve the assignments
Each day a new exercise sheet based on corresponding
CUDA and math/cv lecture
Grade bonus of 0.3 – 0.4:

Deadline: Sunday 11.59 p.m.
Hand in solution for all exercises
Each student has to hand in separately and code must be
individual, i.e. copied code will not be graded and thus fail
Grade bonus achieved, if 80% or more are correct
Achieved grade bonus will be announced during project
phase
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Organizational Setup
Project Phase:

Implement a computer vision algorithm in CUDA
Form groups of three students per group, i.e. eight groups
in total
Pick one of the projects we suggest on Friday or
Suggest your own project
Let us know your group and your three preferred projects
by Friday 11.59 p.m.
Meet your advisor regularly
If we detect cheating, everyone involved gets the grade 5.0
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Organizational Setup
Demo day:

Prepare a presentation of 15–20 minutes per group
Explain the assigned problem/project
How did you proceed to solve it
Each group member presents and describes his/her task in
the project
Show your results
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Organizational Setup
Work from home during project phase:

Access your computer in the lab from home:
ssh -p 58022 a123@hostname.informatik.tu-muenchen.de
Replace a123 with your login handed out by us
Replace hostname with your computer name

type hostname in terminal to find out your computer name
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Why using GPUs?

GPU is available in every PC =⇒ Massive volume and impact!
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Design Difference
CPU vs. GPU

Different goals produce different designs
CPU must be good at everything, parallel or not
GPU assumes work load is highly parallel

CPU: minimize latency experienced by 1 thread
big on-chip caches
sophisticated control logic

GPU: maximize throughput of all threads
skip big caches, multi-threading hides latency
share control logic across many threads: Single instruction,
multiple data (SIMD)
create and run thousands of threads

=⇒ Assumption: The problem is data parallel, i.e. same operations
can be performed independently on many separate data elements.
Many computer vision problems fulfill this assumption.
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Computer Vision Group

Design Difference
CPU vs. GPU

Different goals produce different designs
CPU: Minimize latency using big cache and large control
logic
GPU: Maximize throughput using SIMD and thousands of
threads
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GPU in Detail
Current Architecture

(a) Full GPU with 60 Streaming
Multiprocessors (SMs)

(b) One SM; Each SM has 64
CUDA Cores

Figure: Pascal Architecture with 60 · 64 = 3840 cores

Pascal Architecture in the lab: 2× 6 SMs with 64 CUDA cores each.
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Entering CUDA
“Compute Unified Device Architecture”

Scalable parallel programming model
is suitably efficient and practical when applied to large
amount of data
thus exposes the computational horsepower of GPUs

Abstractions for parallel computing
let programmers focus on parallel algorithms
not mechanics of a parallel programming language

Minimal extensions to familiar C/C++ environment to run
code on the GPU

Easy to learn
but hard to master
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CUDA
Scalable Parallel Programming

Provide straightforward mapping onto hardware
good fit to GPU architecture
thus programmer can focus on parallel algorithms

Execute code by many threads in parallel
Scale to 100s of cores and 10000s of threads

GPU threads are lightweight – create/switch is free
GPU needs 1000s of threads for full utilization
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References
Good to know and almost mandatory to check it out

CUDA has an excellent documentation:
CUDA Toolkit Documentation v8.0
CUDA Programming Guide

Provides detailed discussion of CUDA. Describes hardware
implementation, provides guidance how to achieve maximum
performance and much more in-depth explanations

CUDA Runtime API
List of all CUDA functions

https://developer.nvidia.com/gpu-accelerated-libraries
List of “official” (third party) libraries using of CUDA

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery/
Run deviceQuery sample to quickly see your hardware
specifications
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Outline of the course I

1 Basics (Monday; Björn)
Kernels and Thread Hierarchy
Execution on the GPU
Memory Management
Error Handling And Compiling

2 Memories (Tuesday; Thomas)
Overview of Memory Spaces
Shared Memory
Texture Memory
Constant Memory
Common Strategy for Memory Accesses
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Outline of the course II

1 Optimization (Wednesday; Benedikt)
Branch Divergence
Pitch Allocation for 2D Images
Host-Device Memory Transfer
Occupancy
Parallel reduction

2 Misc (Thursday; Thomas)
Atomics
CUDA Streams and Events
Multi-GPU Programming
Third party libraries

3 Development Tools (Friday; Björn)
CMake
Nsight
CUDA-MEMCHECK
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Example: CPU vs. GPU

CPU - Processes subtasks serially one by one
1 for (int i = 0; i<n; i++)
2 {
3 c[i] = a[i] + b[i];
4 }

GPU - Processes each subtask in parallel
1 __global__ void g_vecAdd (float * a, float *b, float *c)
2 {
3 int i = threadIdx.x + blockDim.x*blockIdx.x;
4 c[i] = a[i] + b[i];
5 }
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Thread Hierarchy

Threads are grouped into blocks
Up to 512 or 1024 threads per block
Thread indices are unique within a block

Note: Threads from the same block can cooperate
synchronize their execution
communicate via shared memory
threads from different blocks cannot cooperate

All blocks together form a grid
Block indices are unique within a grid
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Thread Hierarchy

Blocks and grids can be
1D, 2D or 3D
Dimensions of grids and
blocks are set at launch
Block dimensions can be
different for each grid
Built-in variables to access
dimensions and indices:

gridDim, blockDim
blockIdx, threadIdx
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Index Calculation

Use built-in variables to access unique indices
1 index = thread_in_block + threads_per_block * block_index;

1D
1 int x = threadIdx.x + blockDim.x * blockIdx.x;

2D
1 int x = threadIdx.x + blockDim.x * blockIdx.x;
2 int y = threadIdx.y + blockDim.y * blockIdx.y;

3D
1 int x = threadIdx.x + blockDim.x * blockIdx.x;
2 int y = threadIdx.y + blockDim.y * blockIdx.y;
3 int z = threadIdx.z + blockDim.z * blockIdx.z;
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Kernel Launch

Usual C/C++ function call, with an additional specification
of grid and block sizes:

1 myKernel <<< grid, block >>>( ... );

dim3 grid; dim3 block;
access each dimension, e.g. in the variable block:
block.x; block.y; block.z;

CUDA kernels are launched from the CPU or GPU
CUDA kernels are always executed on the GPU
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Example: One-dimensional Kernel
1 __global__ void myKernel (int *a, int n)
2 {
3 int ind = threadIdx.x + blockDim.x * blockIdx.x;
4 if (ind<n) a[ind] += 1;
5 }
6

7 int main()
8 {
9 dim3 block = dim3(128,1,1); // 128*1*1 threads per block
10 // ensure enough blocks to cover n elements (round up)
11 dim3 grid = dim3( (n + block.x –1) / block.x, 1, 1);
12 myKernel <<<grid, block>>> (d_a, n);
13

14 // Also possible:
15 // launch 4 blocks, each with 128 threads per block
16 myKernel <<<4,128>>> (d_a, n);
17 }
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Example: Two-dimensional Kernel
1 __global__ void myKernel (int *a, int w, int h)
2 {
3 int x = threadIdx.x + blockDim.x * blockIdx.x;
4 int y = threadIdx.y + blockDim.y * blockIdx.y;
5 int ind = x + w*y; //derive linear index
6 if (x<w && y<h) a[ind] += 1;
7 }
8

9 int main()
10 {
11 dim3 block = dim3(32,8,1); // 32*8*1 = 256 threads per block
12

13 // ensure enough blocks to cover w * h elements (round up)
14 dim3 grid = dim3( (w + block.x –1) / block.x,
15 (h + block.y - 1) / block.y, 1 );
16

17 myKernel <<<grid,block>>> (d_A, w, h);
18 }
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Why this if-statement?

There may be more threads than array elements
=⇒ Always test whether the indices are within bounds

1 __global__ void myKernel (int *a, int n)
2 {
3 int ind = threadIdx.x + blockDim.x * blockIdx.x;
4 if (ind<n) a[ind] += 1;
5 }
6

7 __global__ void myKernel (int *a, int w, int h)
8 {
9 int x = threadIdx.x + blockDim.x * blockIdx.x;
10 int y = threadIdx.y + blockDim.y * blockIdx.y;
11 int ind = x + w*y; //derive linear index
12 if (x<w && y<h) a[ind] += 1;
13 }
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = 7;
5 }
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = 7;
5 }

6 //Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = blockIdx.x;
5 }
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = blockIdx.x;
5 }

6 //Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = threadIdx.x;
5 }
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Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = threadIdx.x;
5 }

6 //Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
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Code Executed on GPU
GPU Function Type Qualifiers

Terminology: CPU is called host!
GPU is called device!

__global__: kernels
launched by CPU to run on the GPU must return void

__device__: auxiliary GPU functions
launched by __global__ or __device__ functions to run on
the GPU

__host__: “normal” CPU C/C++ functions
launched by CPU to run on the CPU

__host__ __device__: qualifiers can be combined
callable from CPU and from GPU
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Code Executed on GPU
Crucial Restrictions

On CPU: only access CPU memory
On GPU: only access GPU memory

GPU can access CPU memory:
Page-Locked Host Memory (special allocation of host
memory)
from CUDA 6: Unified Memory (managed memory space
with coherent memory of device and host)

no access to host functions
no static variables in functions or classes

static variable for functions possible: __device__ volatile
keyword

from CUDA 7: variadic templates variable number of
arguments
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Code Executed on GPU
Features

Many C/C++ features available for GPU code
templates
recursion (CC >= 2.0)
overloading

function overloading
operator overloading

classes
stack allocation
heap allocation (CC >= 2.0)
inheritance, virtual functions (CC >= 2.0)

function pointers (CC >= 2.0)
printf() formatted output (CC >= 2.0)

Vector variants of basic types
float2, float3, float4, double2, int4, char2, etc.
float2 a = make_float2(1,2); a.x = 10; a.y = a.x;
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Blocks
Must Be Independent

Any possible ordering of blocks should be valid
Can run in any order (order is unspecified)
Can run concurrently OR sequentially

Blocks may coordinate but not synchronize
Independence requirement gives scalability
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Execution of Kernels
Asynchronous

Kernel launches are asynchronous w.r.t. CPU
after kernel launch, immediately control returns
CPU is free to do other work while the GPU is busy

Kernel launches are queued
kernel does not start until previous kernels are finished
concurrent kernels possible for CUDA >= 7.0: Streams
(given enough resources)

Explicit synchronization, if needed
Use cudaDeviceSynchronize()
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NVIDIA GPU Architecture

Each GPU can have up to 10 (Tesla), 16 (Fermi), 15
(Kepler), 24 (Maxwell) or 60 (Pascal) independent
Streaming Multiprocessors (SMs)
No shared resources across SMs, except global memory
No synchronization, always work in parallel
Each SM can have 24 (Tesla), 32 (Fermi), 192 (Kepler),
128 (Maxwell) or 64 (Pascal) CUDA cores.
In total a GPU can have 240 (Tesla), 512 (Fermi), 2880
(Kepler), 3072 (Maxwell) or 3840 (Pascal) cores
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Execution of Kernels on the GPU

Blocks are distributed across SMs
Active blocks

are currently executed
reside on a multiprocessor
resources allocated
executed until finished

Waiting blocks
wait to be executed
not yet assigned to a SM
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Illustration of Architecture
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Blocks Execute on Multiprocessors

Each block is executed on one Multiprocessor (SM)
cannot migrate
reason for block independence

Several blocks per SM possible
if enough resources available
SM resources are divided among all blocks

Block threads share SM resources
SM registers are divided up among the threads
SM shared memory can be read/written by all threads
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Warps
Key Architectural Idea

SIMT (Single Instruction Multiple Thread) execution
threads run in groups of 32 called warps

All 32 threads in a warp execute the same instruction
always, no matter what (even if threads diverge)

Threads are executed warp-wise by the GPU
for each warp, the 32 threads are executed in parallel
warps are executed one after another
but several warps can run simultaneously
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Warps in Multiprocessors

Resources are allocated for all potential warps
the state of every potentially executable warp is always
present on the Multiprocessor, until finished
overall many more potentially executable threads than
CUDA Cores possible

Switching between warps is free and any non-waiting warp
can run
At each clock cycle each warp scheduler chooses a single
warp which is ready to be executed
For each chosen warp the next instruction is executed for
all 32 threads of the warp
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Example

Assume there are six blocks on one (out of four) SM(s).
Each block has 128 threads

Threads from all blocks are divided into warps:
6(blocks)*128(threads/block)/32=24 warps, i.e. 4 warps
from every block
Having two warp schedulers, two (out of 24) warps can be
executed in parallel

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 44 / 57



Computer Vision Group

Outline

1 Introduction
Group Introduction
Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 45 / 57



Computer Vision Group

GPU Memory

CPU and GPU have separate memory spaces
data is moved across PCIe bus
use functions to allocate/set/copy memory on GPU

cudaMalloc, cudaMemset, cudaFree

Pointers are just addresses
cannot tell from pointer if memory is on GPUs or CPU

but possible using unified virtual addressing
dereference with caution:

crash if GPU dereferences pointer to CPU memory and vice
versa
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Allocate and Release GPU Memory

Host (CPU) manages device (GPU) memory:
cudaMalloc(void **pointer, size_t nbytes)
cudaMemset(void *pointer, int value, size_t count)
cudaFree(void* pointer)

1 int n = 1024;
2 size_t nbytes = (size_t)(n)*sizeof(int);
3 int *d_a = NULL;
4

5 cudaMalloc(&d_a, nbytes); //allocate memory on device
6 cudaMemset(d_a, 0, nbytes); //fill array with 0 valued !ints!
7 cudaFree(d_a); //free memory on device again
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Copy Data between CPU and GPU

cudaMemcpy (void *dst, void *src, size_t nbytes,
cudaMemcpyKind direction);

blocks the CPU thread until all bytes have been copied
non-blocking variants are also available
doesn’t start copying until all previous CUDA calls complete

cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

1 cudaMemcpy( dev_ptr,
2 host_ptr,
3 (size_t)(n)*sizeof(float),
4 cudaMemcpyHostToDevice);
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Example Host Code
1 // allocate and initialize host (CPU) memory
2 float *h_a = ..., *h_b = ...; *h_c = ...; (empty)
3
4 // allocate device (GPU) memory
5 float *d_a, *d_b, *d_c;
6 cudaMalloc( &d_a, n * sizeof(float) );
7 cudaMalloc( &d_b, n * sizeof(float) );
8 cudaMalloc( &d_c, n * sizeof(float) );
9
10 // copy host memory to device
11 cudaMemcpy( d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice );
12 cudaMemcpy( d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice );
13
14 // launch kernel
15 dim3 block = dim3(128,1,1);
16 dim3 grid = dim3((n + block.x –1) / block.x, 1, 1);
17 vecAdd <<<grid,block>>> (d_a, d_b, d_c);
18
19 // copy result back to host (CPU) memory
20 cudaMemcpy( h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost );
21
22 // do something with the result...
23
24 // free device (GPU) memory
25 cudaFree(d_a);
26 cudaFree(d_b);
27 cudaFree(d_c);
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Use float by Default!!!

GPUs can handle double
But float operations are still much faster

by an order of magnitude
so use double only if float is really not enough

Avoid using double, unless necessary
Add ’f’ suffix to float literals:

0.f, 1.0f, 3.1415f are of type float
0.0, 1.0, 3.1415 are of type double

Use float version of math functions:
expf / logf / sinf / sqrtf / etc. take and return float
exp / log / sin / sqrt / etc. take and return double
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Blocks Size
How to choose

Number of threads per block should be multiple of 32
because threads are always executed in groups of 32
(buzzword: warps)

Rules of thumb:
not too small or too big: between 128 and 256 threads
start with dim3(32,8,1), i.e. 256 threads per block
experiment with similar sized ”multiple-of-32”-blocks:

dim3(64,4,1), dim3(128,2,1), dim3(32,4,1),
dim3(64,2,1)
dim3(32,16,1), dim3(64,8,1), dim3(128,4,1),
dim3(256,2,1)

measure the run time and choose the best block size!
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Error Handling

Checking for errors is crucial for programming GPUs
cudaError_t cudaGetLastError()

returns the code for the last error
resets the error flag back to cudaSuccess
cudaPeekAtLastError(): get error code without resetting it
if everything OK: cudaSuccess

char* cudaGetErrorString(cudaError_t code)
returns a C-string describing the error

1 cudaMalloc(&d_a, n*sizeof(float));
2 cudaError_t e = cudaGetLastError();
3 if (e!=cudaSuccess)
4 {
5 cerr << "ERROR: " << cudaGetErrorString(e) << endl;
6 exit(1);
7 }
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Error Handling
Kernel execution is asynchronous

first force to wait for the kernel to finish by
cudaDeviceSynchronize()
only then call cudaGetLastError()

otherwise it will be called too soon, the error may not have
yet occurred

kernel launch itself may produce errors due to invalid
configurations

too many threads/block, too many blocks, too much shared
memory requested

Kernels may produce subtle memory corruption errors
may get unnoticed even after cudaDeviceSynchronize()
subsequent CUDA calls may or may not fail because of
such an error
if they do fail, they were not the origin of the error

It helps to keep track of the previous {1, 2, ..., 10} CUDA
calls
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Compiling

CUDA files have ending .cu: squareArray.cu
NVidia CUDA Compiler: nvcc

handles the CUDA part
hands over pure C/C++ part to host compiler
nvcc -o squareArray squareArray.cu

Additional info about the kernels using --ptxas-options=-v:

nvcc -o squareArray squareArray.cu --ptxas-options=-v
ptxas info: Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10'

ptxas info: Used 2 registers, 28 bytes smem
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Summary
Cheat Sheat

Thread Hierarchy:
thread- smallest executable unit
warp - group of 32 threads
block - group of threads, shared memory for collaboration
grid - consists of several blocks

Keyword extensions for C/C++:
__global__ - kernel-function called by CPU, executed on
GPU
__device__ - function called by GPU and executed on GPU
__host__ - [optional]-function called and executed by
CPU
<<<...>>> - kernel launch, chevrons specify grid and
block sizes

Compilation:
nvcc -o <executable> <filename>.cu
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