

Practical Course: GPU Programming in Computer Vision CUDA Basics

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

Technische Universität München Department of Informatics Computer Vision Group

Summer Semester 2017 September 11 - October 8

When Computer Vision Group

Outline

- 1 Introduction
 - Group Introduction
 - Organizational Setup
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

Outline

- 1 Introduction
 - Group IntroductionOrganizational Setup
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

Sabine Wagner Dr. Csaba Domokos Dr. Laura Leal-Taixé

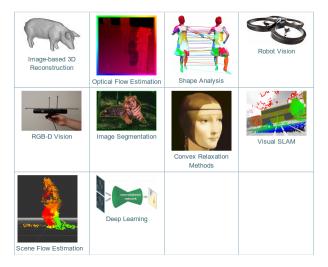
Virginia Estelleg Casas

Tarifa

Benedikt

Quirin Lohr

Our Research Interests



Organizational Setup

What is this course about?

- Parallel Programming using CUDA
- Computer Vision Basics
- Work on a cool final project

What will you learn?

- How to program parallel processors
- Acquire the technical knowledge to understand how CUDA works
- Apply this knowledge efficiently to implement computer vision algorithms and gain a massive speedup

Organizational Setup

Time line:

- Lecture (September 11-15)
 - 2–3h lectures !!!attendance is mandatory!!!
 - Followed by programming exercises until open end
- Project (September 15 October 8)
 - Implement an advanced application assigned to your group
 - Group of three students
- Demo day (October 9)
 - Prepare a presentation and demo
 - Showing off what your group achieved throughout the project phase

Organizational Setup

Lecture:

- Starts at 10 a.m. sharp!
- Don't forget: !!!attendance is mandatory!!!
- First part of lecture corresponds to CUDA
- Short break of 15 min
- Second part of lecture corresponds to mathematics/computer vision

Organizational Setup

Exercises:

- Starts after the second part of the lecture
- Will be supervised until 4/5 p.m.
- Stay as long as you want to solve the assignments
- Each day a new exercise sheet based on corresponding CUDA and math/cv lecture
- Grade bonus of 0.3 0.4:
 - Deadline: Sunday 11.59 p.m.
 - Hand in solution for all exercises
 - Each student has to hand in separately and code must be individual, i.e. copied code will not be graded and thus fail
 - Grade bonus achieved, if 80% or more are correct
 - Achieved grade bonus will be announced during project phase

Organizational Setup

Project Phase:

- Implement a computer vision algorithm in CUDA
- Form groups of three students per group, i.e. eight groups in total
- Pick one of the projects we suggest on Friday or
- Suggest your own project
- Let us know your group and your three preferred projects by Friday 11.59 p.m.
- Meet your advisor regularly
- If we detect cheating, everyone involved gets the grade 5.0

Organizational Setup

Demo day:

- Prepare a presentation of 15–20 minutes per group
- Explain the assigned problem/project
- How did you proceed to solve it
- Each group member presents and describes his/her task in the project
- Show your results

Organizational Setup

Work from home during project phase:

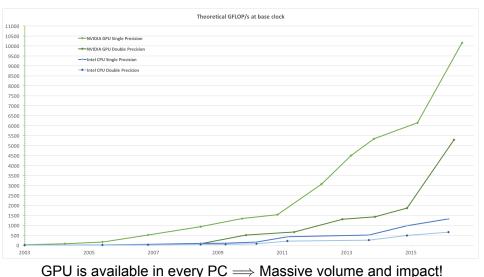
- Access your computer in the lab from home: ssh -p 58022 a123@hostname.informatik.tu-muenchen.de
- Replace a123 with your login handed out by us
- Replace hostname with your computer name
 - type hostname in terminal to find out your computer name

Outline

- Introduction
 Group Introduction
 Organizational Setu
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

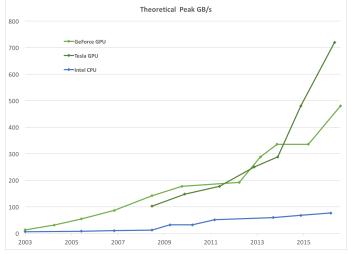
Why using GPUs?



GPU is available in every PC \implies massive volume and impart

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision

Why using GPUs?



GPU is available in every $PC \implies$ Massive volume and impact!

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision

Design Difference

CPU vs. GPU

Different goals produce different designs

- CPU must be good at everything, parallel or not
- GPU assumes work load is highly parallel
- CPU: minimize latency experienced by 1 thread
 - big on-chip caches
 - sophisticated control logic
- GPU: maximize throughput of all threads
 - skip big caches, multi-threading hides latency
 - share control logic across many threads: Single instruction, multiple data (SIMD)
 - create and run thousands of threads

 \Longrightarrow Assumption: The problem is data parallel, i.e. same operations can be performed independently on many separate data elements. Many computer vision problems fulfill this assumption.

Design Difference

CPU vs. GPU

Different goals produce different designs

- CPU: Minimize latency using big cache and large control logic
- GPU: Maximize throughput using SIMD and thousands of threads

GPU in Detail

Current Architecture

(a) Full GPU with 60 Streaming Multiprocessors (SMs) (b) One SM; Each SM has 64 CUDA Cores

Figure: Pascal Architecture with $60 \cdot 64 = 3840$ cores

Pascal Architecture in the lab: 2×6 SMs with 64 CUDA cores each.

Entering CUDA

"Compute Unified Device Architecture"

- Scalable parallel programming model
 - is suitably efficient and practical when applied to large amount of data
 - thus exposes the computational horsepower of GPUs
- Abstractions for parallel computing
 - Iet programmers focus on parallel algorithms
 - not mechanics of a parallel programming language
- Minimal extensions to familiar C/C++ environment to run code on the GPU
 - Easy to learn
 - but hard to master

CUDA

Scalable Parallel Programming

- Provide straightforward mapping onto hardware
 - good fit to GPU architecture
 - thus programmer can focus on parallel algorithms
- Execute code by many threads in parallel
- Scale to 100s of cores and 10000s of threads
 - GPU threads are lightweight create/switch is free
 - GPU needs 1000s of threads for full utilization

References

Good to know and almost mandatory to check it out

CUDA has an excellent documentation:

- CUDA Toolkit Documentation v8.0
- CUDA Programming Guide
 - Provides detailed discussion of CUDA. Describes hardware implementation, provides guidance how to achieve maximum performance and much more in-depth explanations
- CUDA Runtime API
 - List of all CUDA functions
- https://developer.nvidia.com/gpu-accelerated-libraries
 - List of "official" (third party) libraries using of CUDA
- cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery/
 - Run deviceQuery sample to quickly see your hardware specifications

Outline of the course I

- Basics (Monday; Björn)
 - Kernels and Thread Hierarchy
 - Execution on the GPU
 - Memory Management
 - Error Handling And Compiling
- 2 Memories (Tuesday; Thomas)
 - Overview of Memory Spaces
 - Shared Memory
 - Texture Memory
 - Constant Memory
 - Common Strategy for Memory Accesses

Outline of the course II

- Optimization (Wednesday; Benedikt)
 - Branch Divergence
 - Pitch Allocation for 2D Images
 - Host-Device Memory Transfer
 - Occupancy
 - Parallel reduction
- 2 Misc (Thursday; Thomas)
 - Atomics
 - CUDA Streams and Events
 - Multi-GPU Programming
 - Third party libraries
- 3 Development Tools (Friday; Björn)
 - CMake
 - Nsight
 - CUDA-MEMCHECK

Outline

- 1 Introduction
 - Group Introduction
 Organizational Setu
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

Example: CPU vs. GPU

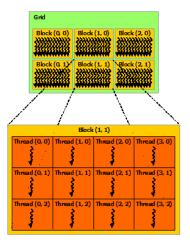
```
CPU - Processes subtasks serially one by one
  for (int i = 0; i<n; i++)</pre>
1
2 {
3 c[i] = a[i] + b[i];
4 }
GPU - Processes each subtask in parallel
  __global__ void g_vecAdd (float * a, float *b, float *c)
  ł
2
3
    int i = threadIdx.x + blockDim.x*blockIdx.x;
  c[i] = a[i] + b[i];
4
5 }
```


Thread Hierarchy

- Threads are grouped into blocks
 - Up to 512 or 1024 threads per block
 - Thread indices are unique within a block
- Note: Threads from the same block can cooperate
 - synchronize their execution
 - communicate via shared memory
 - threads from different blocks cannot cooperate
- All blocks together form a grid
 - Block indices are unique within a grid

Thread Hierarchy

- Blocks and grids can be 1D, 2D or 3D
- Dimensions of grids and blocks are set at launch
- Block dimensions can be different for each grid
- Built-in variables to access dimensions and indices:
 - gridDim, blockDim
 - blockIdx, threadIdx



Index Calculation

- Use built-in variables to access unique indices
- index = thread_in_block + threads_per_block * block_index;

```
1D
int x = threadIdx.x + blockDim.x * blockIdx.x;
2D
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
3D
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int z = threadIdx.z + blockDim.z * blockIdx.z;
```


Kernel Launch

- Usual C/C++ function call, with an additional specification of grid and block sizes:
- myKernel <<< grid, block >>>(...);
- dim3 grid; dim3 block;
 - access each dimension, e.g. in the variable block: block.x; block.y; block.z;
- CUDA kernels are launched from the CPU or GPU
- CUDA kernels are always executed on the GPU

Example: One-dimensional Kernel

```
__global__ void myKernel (int *a, int n)
   s
2
     int ind = threadIdx.x + blockDim.x * blockIdx.x;
3
     if (ind<n) a[ind] += 1;</pre>
4
   }
5
6
   int main()
7
   ł
8
     dim3 block = dim3(128,1,1); // 128*1*1 threads per block
9
     // ensure enough blocks to cover n elements (round up)
10
     dim3 grid = dim3( (n + block.x - 1) / block.x, 1, 1);
11
     myKernel <<<grid, block>>> (d a, n);
12
13
    // Also possible:
14
     // launch 4 blocks, each with 128 threads per block
15
     myKernel <<<4,128>>> (d_a, n);
16
   }
17
```


Example: Two-dimensional Kernel

```
__global__ void myKernel (int *a, int w, int h)
   Ł
2
     int x = threadIdx.x + blockDim.x * blockIdx.x:
3
4
     int y = threadIdx.y + blockDim.y * blockIdx.y;
     int ind = x + w*y; //derive linear index
5
     if (x<w && y<h) a[ind] += 1;
6
   }
7
8
   int main()
9
10
   ſ
     dim3 block = dim3(32,8,1); // 32*8*1 = 256 threads per block
11
12
     // ensure enough blocks to cover w * h elements (round up)
13
     dim3 grid = dim3( (w + block.x -1) / block.x,
14
     (h + block.y - 1) / block.y, 1);
15
16
     myKernel <<<grid,block>>> (d A, w, h);
17
   }
18
```


Why this if-statement?

```
There may be more threads than array elements

Always test whether the indices are within bounds
```

```
__global__ void myKernel (int *a, int n)
2
     int ind = threadIdx.x + blockDim.x * blockIdx.x;
3
     if (ind<n) a[ind] += 1;</pre>
4
5
  }
6
   __global__ void myKernel (int *a, int w, int h)
7
8
     int x = threadIdx.x + blockDim.x * blockIdx.x;
9
     int y = threadIdx.y + blockDim.y * blockIdx.y;
10
     int ind = x + w*y; //derive linear index
11
     if (x<w && y<h) a[ind] += 1;</pre>
12
   }
13
```


kernel<<<4,4>>>(d_a);


```
kernel<<<4,4>>>(d_a);
```

```
1 __global__ void kernel (int *a)
2 {
3    int idx = threadIdx.x + blockDim.x * blockIdx.x;
4    a[idx] = 7;
5 }
```



```
kernel<<<4,4>>>(d_a);
```

```
1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = 7;
5 }
```



```
kernel<<<4,4>>>(d_a);
```

```
1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = blockIdx.x;
5 }
```


Exercise: IDs of Threads and Blocks

```
kernel<<<4,4>>>(d_a);
```

```
1 __global__ void kernel (int *a)
2 {
3    int idx = threadIdx.x + blockDim.x * blockIdx.x;
4    a[idx] = blockIdx.x;
5 }
```

```
6 //Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
```


Exercise: IDs of Threads and Blocks

```
kernel<<<4,4>>>(d_a);
```

```
1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = threadIdx.x;
5 }
```


Exercise: IDs of Threads and Blocks

```
kernel<<<4,4>>>(d_a);
```

```
1 __global__ void kernel (int *a)
2 {
3    int idx = threadIdx.x + blockDim.x * blockIdx.x;
4    a[idx] = threadIdx.x;
5 }
6 //Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
```

```
Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision
```

When Computer Vision Group

Code Executed on GPU

GPU Function Type Qualifiers

Terminology: CPU is called host! GPU is called device!

- __global__: kernels
 - Iaunched by CPU to run on the GPU must return void
- __device__: auxiliary GPU functions
 - Iaunched by __global__ or __device__ functions to run on the GPU
- __host__: "normal" CPU C/C++ functions
 - Iaunched by CPU to run on the CPU

__host____device__: qualifiers can be combined
 callable from CPU and from GPU

When Computer Vision Group

Code Executed on GPU

Crucial Restrictions

- On CPU: only access CPU memory
- On GPU: only access GPU memory
 - GPU can access CPU memory:
 - Page-Locked Host Memory (special allocation of host memory)
 - from CUDA 6: Unified Memory (managed memory space with coherent memory of device and host)
 - no access to host functions
 - no static variables in functions or classes
 - static variable for functions possible: __device__ volatile
 keyword
 - from CUDA 7: variadic templates variable number of arguments

Harm Computer Vision Group

Code Executed on GPU

Features

Many C/C++ features available for GPU code

templates

recursion (CC >= 2.0)

overloading

function overloading

- operator overloading
- classes
 - stack allocation
 - heap allocation (CC >= 2.0)
 - inheritance, virtual functions (CC >= 2.0)
- function pointers (CC >= 2.0)
- printf() formatted output (CC >= 2.0)

Vector variants of basic types

- float2, float3, float4, double2, int4, char2, etc.
- float2 a = make_float2(1,2); a.x = 10; a.y = a.x;

Blocks

Must Be Independent

Any possible ordering of blocks should be valid

- Can run in any order (order is unspecified)
- Can run concurrently OR sequentially
- Blocks may coordinate but not synchronize
- Independence requirement gives scalability

Execution of Kernels

Asynchronous

Kernel launches are asynchronous w.r.t. CPU

- after kernel launch, immediately control returns
- CPU is free to do other work while the GPU is busy
- Kernel launches are queued
 - kernel does not start until previous kernels are finished
 - concurrent kernels possible for CUDA >= 7.0: Streams (given enough resources)
- Explicit synchronization, if needed
 - Use cudaDeviceSynchronize()

Outline

- 1 Introduction
 - Group IntroductionOrganizational Setur
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

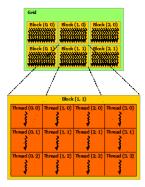
NVIDIA GPU Architecture

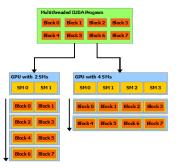
- Each GPU can have up to 10 (Tesla), 16 (Fermi), 15 (Kepler), 24 (Maxwell) or 60 (Pascal) independent Streaming Multiprocessors (SMs)
- No shared resources across SMs, except global memory
- No synchronization, always work in parallel
- Each SM can have 24 (Tesla), 32 (Fermi), 192 (Kepler), 128 (Maxwell) or 64 (Pascal) CUDA cores.
- In total a GPU can have 240 (Tesla), 512 (Fermi), 2880 (Kepler), 3072 (Maxwell) or 3840 (Pascal) cores

Execution of Kernels on the GPU

- Blocks are distributed across SMs
- Active blocks
 - are currently executed
 - reside on a multiprocessor
 - resources allocated
 - executed until finished
- Waiting blocks
 - wait to be executed
 - not yet assigned to a SM

Illustration of Architecture





Blocks Execute on Multiprocessors

Each block is executed on one Multiprocessor (SM)

- cannot migrate
- reason for block independence
- Several blocks per SM possible
 - if enough resources available
 - SM resources are divided among all blocks
- Block threads share SM resources
 - SM registers are divided up among the threads
 - SM shared memory can be read/written by all threads

Warps

Key Architectural Idea

- SIMT (Single Instruction Multiple Thread) execution
 threads run in groups of 32 called warps
- All 32 threads in a warp execute the same instruction
 always, no matter what (even if threads diverge)
- Threads are executed warp-wise by the GPU
 - for each warp, the 32 threads are executed in parallel
 - warps are executed one after another
 - but several warps can run simultaneously

Warps in Multiprocessors

- Resources are allocated for all potential warps
 - the state of every potentially executable warp is always present on the Multiprocessor, until finished
 - overall many more potentially executable threads than CUDA Cores possible
- Switching between warps is free and any non-waiting warp can run
- At each clock cycle each warp scheduler chooses a single warp which is ready to be executed
- For each chosen warp the next instruction is executed for all 32 threads of the warp

Example

Computer Vision Group

- Assume there are six blocks on one (out of four) SM(s). Each block has 128 threads
 - Threads from all blocks are divided into warps: 6(blocks)*128(threads/block)/32=24 warps, i.e. 4 warps from every block
 - Having two warp schedulers, two (out of 24) warps can be executed in parallel

Outline

- 1 Introduction
 - Group IntroductionOrganizational Setur
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

che Universität Müncher

GPU Memory

CPU and GPU have separate memory spaces

- data is moved across PCIe bus
- use functions to allocate/set/copy memory on GPU
 - cudaMalloc, cudaMemset, cudaFree
- Pointers are just addresses
 - cannot tell from pointer if memory is on GPUs or CPU
 - but possible using unified virtual addressing
 - dereference with caution:
 - crash if GPU dereferences pointer to CPU memory and vice versa

Allocate and Release GPU Memory

- Host (CPU) manages device (GPU) memory:
 - cudaMalloc(void **pointer, size_t nbytes)
 - cudaMemset(void *pointer, int value, size_t count)
 - cudaFree(void* pointer)

```
int n = 1024;
size_t nbytes = (size_t)(n)*sizeof(int);
int *d_a = NULL;
```

- 5 cudaMalloc(&d_a, nbytes); //allocate memory on device
- 6 cudaMemset(d_a, 0, nbytes); //fill array with 0 valued !ints!
- 7 cudaFree(d_a); //free memory on device again

Copy Data between CPU and GPU

- cudaMemcpy (void *dst, void *src, size_t nbytes, cudaMemcpyKind direction);
 - blocks the CPU thread until all bytes have been copied
 - non-blocking variants are also available
 - doesn't start copying until all previous CUDA calls complete
- cudaMemcpyKind
 - cudaMemcpyHostToDevice
 - cudaMemcpyDeviceToHost
 - cudaMemcpyDeviceToDevice
- cudaMemcpy(dev_ptr,
- ² host_ptr,
- 3 (size_t)(n)*sizeof(float),
- 4 cudaMemcpyHostToDevice);

Example Host Code

```
// allocate and initialize host (CPU) memory
     float *h a = .... *h b = ...: *h c = ...: (empty)
2
3
4
     // allocate device (GPU) memory
5
     float *d_a, *d_b, *d_c;
6
     cudaMalloc( &d a. n * sizeof(float) );
7
     cudaMalloc( &d_b, n * sizeof(float) );
8
     cudaMalloc( &d_c, n * sizeof(float) );
9
10
     // copy host memory to device
11
     cudaMemcpy( d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice );
12
     cudaMemcpv( d b, h b, n * sizeof(float), cudaMemcpvHostToDevice );
13
14
     // launch kernel
15
     dim3 block = dim3(128,1,1);
16
     dim3 grid = dim3((n + block.x - 1) / block.x, 1, 1);
17
     vecAdd <<<grid,block>>> (d_a, d_b, d_c);
18
19
     // copy result back to host (CPU) memory
20
     cudaMemcpv( h c, d c, n * sizeof(float), cudaMemcpvDeviceToHost );
21
22
     // do something with the result...
23
24
     // free device (GPU) memory
25
     cudaFree(d_a);
26
     cudaFree(d b):
27
     cudaFree(d_c);
```


Use float by Default!!!

- GPUs can handle double
- But float operations are still much faster
 - by an order of magnitude
 - so use double only if float is really not enough
- Avoid using double, unless necessary
 - Add 'f' suffix to float literals:
 - 0.f, 1.0f, 3.1415f are of type float
 - 0.0, 1.0, 3.1415 are of type double
 - Use float version of math functions:
 - expf / logf / sinf / sqrtf / etc. take and return float
 - exp/log/sin/sqrt/etc. take and return double

Blocks Size

How to choose

Number of threads per block should be multiple of 32

- because threads are always executed in groups of 32 (buzzword: warps)
- Rules of thumb:
 - not too small or too big: between 128 and 256 threads
 - start with dim3(32,8,1), i.e. 256 threads per block
 - experiment with similar sized "multiple-of-32"-blocks:
 - dim3(64,4,1), dim3(128,2,1), dim3(32,4,1), dim3(64,2,1)
 - dim3(32,16,1), dim3(64,8,1), dim3(128,4,1), dim3(256,2,1)

measure the run time and choose the best block size!

Outline

- 1 Introduction
 - Group IntroductionOrganizational Setur
- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

Error Handling

Computer Vision Group

- Checking for errors is crucial for programming GPUs
- cudaError_t cudaGetLastError()
 - returns the code for the last error
 - resets the error flag back to cudaSuccess
 - cudaPeekAtLastError(): get error code without resetting it
 - if everything OK: cudaSuccess
- char* cudaGetErrorString(cudaError_t code)
 - returns a C-string describing the error

```
1 cudaMalloc(&d_a, n*sizeof(float));
2 cudaError_t e = cudaGetLastError();
3 if (e!=cudaSuccess)
4 {
5 cerr << "ERROR: " << cudaGetErrorString(e) << endl;
6 exit(1);
7 }
```

Error Handling

- Kernel execution is asynchronous
 - first force to wait for the kernel to finish by cudaDeviceSynchronize()
 - only then call cudaGetLastError()
 - otherwise it will be called too soon, the error may not have yet occurred
 - kernel launch itself may produce errors due to invalid configurations
 - too many threads/block, too many blocks, too much shared memory requested
- Kernels may produce subtle memory corruption errors
 - may get unnoticed even after cudaDeviceSynchronize()
 - subsequent CUDA calls may or may not fail because of such an error

if they do fail, they were not the origin of the error

■ It helps to keep track of the previous {1, 2, ..., 10} CUDA calls

Compiling

- CUDA files have ending .cu: squareArray.cu
- NVidia CUDA Compiler: nvcc
 - handles the CUDA part
 - hands over pure C/C++ part to host compiler nvcc -o squareArray squareArray.cu
- Additional info about the kernels using --ptxas-options=-v:

nvcc -o squareArray squareArray.cu --ptxas-options=-v
ptxas info: Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10'
ptxas info: Used 2 registers, 28 bytes smem

Outline

- 1 Introduction
 - Group IntroductionOrganizational Setur

Computer Vision Group

- 2 Why using GPUs?
- 3 Kernels and Thread Hierarchy
- 4 Execution on the GPU
- 5 Memory Management
- 6 Error Handling and Compiling

7 Summary

che Universität Müncher

Summary

Cheat Sheat

Thread Hierarchy:

- thread- smallest executable unit
- warp group of 32 threads
- block group of threads, shared memory for collaboration
- grid consists of several blocks

Keyword extensions for C/C++:

- __global__ kernel-function called by CPU, executed on GPU
- __device__ function called by GPU and executed on GPU
- __host__ [optional]-function called and executed by CPU
- kernel launch, chevrons specify grid and block sizes

Compilation:

nvcc -o <executable> <filename>.cu