
Computer Vision Group

Practical Course: GPU Programming in
Computer Vision
CUDA Memories

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

Technische Universität München
Department of Informatics
Computer Vision Group

Summer Semester 2017
September 11 - October 8

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 1 / 40



Computer Vision Group

Outline

1 Overview of Memory Spaces

2 Shared Memory

3 Texture Memory

4 Constant Memory

5 Common Strategy for Memory Accesses

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 2 / 40



Computer Vision Group

Outline

1 Overview of Memory Spaces

2 Shared Memory

3 Texture Memory

4 Constant Memory

5 Common Strategy for Memory Accesses

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 3 / 40



Computer Vision Group

CUDA Memories

red line is global memory (off-chip)
green circle is the chip, contains SMs and on-chip memory

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 4 / 40



Computer Vision Group

CUDA Memories

Each thread can:
read / write per-thread
registers
read / write per-block
shared memory
read / write per-grid
global memory
read per-grid constant
memory

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 5 / 40



Computer Vision Group

CUDA Memories
Memory Location Access Scope

Register On-Chip Read/Write 1 Thread

Local Off-Chip Read/Write 1 Thread

Shared On-Chip Read/Write All Threads in 1 Block

Global Off-Chip Read/Write All Threads + Host

Constant Off-Chip Read All Threads + Host

Texture Off-Chip Read/(Write) All Threads + Host

Other memories:
local memory
texture memory
both are part of global
memory

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 6 / 40



Computer Vision Group

CUDA Variable Type Qualifiers

Variable declaration Memory Scope Lifetime
int var; register thread thread
int array_var[10]; local memory thread thread
__shared__ int shared_var; shared memory block block
__device__ int global_var; global memory grid application
__constant__ int constant_var; constant memory grid application

Rules of thumb:
scalar variables without qualifier reside in a register
(compiler may spill to local memory)
array variables without qualifier reside in local memory

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 7 / 40



Computer Vision Group

CUDA Variable Type Performance

Variable declaration Memory Penalty
int var; register 1x
int array_var[10]; local 100x
__shared__ int shared_var; shared 1x
__device__ int global_var; global 100x
__constant__ int constant_var; constant 1x

scalar variables reside in fast, on-chip registers
shared memory resides in fast, on-chip memories
thread local arrays & global variables reside in off-chip
memory (though cached on modern architectures)
constant variables reside in cached off-chip memory

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 8 / 40



Computer Vision Group

CUDA Variable Type Scale

Variable declaration Instances Visibility
int var; 100,000s 1
int array_var[10]; 100,000s 1
__shared__ int shared_var; 100s 100s
__device__ int global_var; 1 100,000s
__constant__ int constant_var; 1 100,000s

100,000s per-thread variables, read/write by 1 thread
100s shared variables, each read/write by 100s of threads
1 global variable, is read/write by 100,000s of threads
1 constant variable, is read by 100,000s of threads

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 9 / 40



Computer Vision Group

Local Memory
Compiler might place variables
in local memory:

too many register variables
a structure consumes too
much register space
an array is not indexed
with constant quantities,
i.e., when the addressing
of the array is not known at
compile time

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 10 / 40



Computer Vision Group

Outline

1 Overview of Memory Spaces

2 Shared Memory

3 Texture Memory

4 Constant Memory

5 Common Strategy for Memory Accesses

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 11 / 40



Computer Vision Group

Global and Shared Memory

Global memory is located off-chip
high latency (often the bottleneck of computation)
important to minimize accesses
cached (L1 and L2) for reasonably modern GPUs (not
cached for CC 1.x GPUs)
difficulty: try to coalesce accesses (more later)

Shared memory is on-chip
low latency
like a user-managed per-SM cache
GPUs in lab: 48kb per multiprocessor
minor difficulty: try to minimize or avoid bank conflicts
(more tomorrow)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 12 / 40



Computer Vision Group

Take Advantage of Shared Memory

Hundreds of times faster than global memory
Threads can cooperate via shared memory
Avoid multiple loads of same data by different threads of
the block
Use one/a few threads to load/compute data shared by all
threads in the block

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 13 / 40



Computer Vision Group

Shared Memory: Example
1 // forward differences discretization of derivative
2 __global__ void diff_global(float *result, float *input, int n)
3 {
4 int i = threadIdx.x + blockDim.x*blockIdx.x;
5
6 float res = 0;
7 if (i+1 < n)
8 {
9 // each thread loads two elements from global memory
10 float xplus1 = input[i+1];
11 float x0 = input[i];
12 res = xplus1 – x0;
13 }
14 if(i<n) result[i] = res;
15 }

input[i] is read by thread i-1 and by thread i
Idea: eliminate redundancy by sharing data

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 14 / 40



Computer Vision Group

Shared Memory: Example
1 #define BLOCK_SIZE 32
2
3 // forward differences discretization of derivative
4 __global__ void diff_shared(float *result, float *input, int n)
5 {
6 int i = threadIdx.x + blockDim.x*blockIdx.x;
7 int iblock = threadIdx.x; // local "block" version of i
8
9 // allocate shared array, of constant size BLOCK_SIZE
10 __shared__ float sh_data[BLOCK_SIZE];
11
12 // each thread reads one element and writes into sh_data
13 if (i<n) sh_data[iblock] = input[i];
14
15 // ensure all threads finish writing before continuing
16 __syncthreads();
17 ...

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 15 / 40



Computer Vision Group

Shared Memory: Example
1 ...
2
3 float res = 0;
4 if (i+1 < n)
5 {
6 // handle thread block boundary
7 int xplus1 = (iblock+1<blockDim.x)? sh_data[iblock+1] : input[i+1];
8 int x0 = sh_data[iblock];
9 res = xplus1 –x0;
10 }
11 if(i<n) result[i] = res;
12 }

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 16 / 40



Computer Vision Group

Shared Memory: Example
1 __global__ void diff_global(float *result,
2 float *input, int n) {
3 int i = threadIdx.x + blockDim.x*blockIdx.x;
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 float res = 0;
19 if (i+1 < n) {
20 // each thread loads
21 // two elements from global memory
22 float xplus1 = input[i+1];
23 float x0 = input[i];
24 res = xplus1 - x0;
25 }
26 if(i<n) result[i] = res;
27 }

1 __global__ void diff_shared(float *result,
2 float *input, int n) {
3 int i = threadIdx.x + blockDim.x*blockIdx.x;
4 // local "block" version of i
5 int iblock = threadIdx.x;
6
7 // allocate shared array of size BLOCK_SIZE
8 __shared__ float sh_data[BLOCK_SIZE];
9
10 // each thread reads one element
11 // and writes into sh_data
12 if (i<n) sh_data[iblock] = input[i];
13
14 // ensure all threads finish
15 // writing before continuing
16 __syncthreads();
17
18 float res = 0;
19 if (i+1 < n) {
20 // handle thread block boundary
21 int xplus1 = (iblock+1<blockDim.x)?
22 sh_data[iblock+1] : input[i+1];
23 int x0 = sh_data[iblock];
24 res = xplus1 - x0;
25 }
26 if (i<n) result[i] = res;
27 }

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 17 / 40



Computer Vision Group

Shared Memory: Dynamic Allocation
Size known at compile time:

1 __global__ void kernel (...)
2 {
3 ...
4 __shared__ float s_data[BLOCK_SIZE];
5 ...
6 }
7
8 int main(void)
9 {
10 ...
11
12
13
14 kernel <<<grid,block>>> (...);
15 ...
16 }

Size known at kernel launch:
1 __global__ void kernel (...)
2 {
3 ...
4 extern __shared__ float s_data[];
5 ...
6 }
7
8 int main(void)
9 {
10 ...
11 // allocate enough shared memory
12 size_t smBytes = block.x * block.y * block.z
13 * sizeof(float);
14 kernel <<<grid,block,smBytes>>> (...);
15 ...
16 }

Always use dynamic allocation
flexibility w.r.t. maximal block size: can specify at run time
no waste of resources: more blocks can run in parallel

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 18 / 40



Computer Vision Group

Shared Memory: Synchronization

__syncthreads();
Synchronizes all threads in a block

generates a barrier synchronization instruction
no thread can pass this barrier until all threads in the block
reach it
used to avoid Read-After-Write / Write-After-Read /
Write-After-Write hazards for shared memory accesses

Allowed in conditional code („if“, „while“, etc.) only if the
conditional is uniform across the block

e.g. every thread follows the same „if“- or „else“-path

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 19 / 40



Computer Vision Group

Shared Memory: Synchronization

Always use __syncthreads(); after writing to the shared
memory to ensure that data is ready for accessing
Don’t synchronize or serialize unnecessarily

1 __global__ void share_data(int *input)
2 {
3 extern __shared__ int data[];
4 data[threadIdx.x] = input[threadIdx.x];
5 __syncthreads();
6 // the state of the entire data array
7 // is now well-defined for all threads in the block
8 }

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 20 / 40



Computer Vision Group

Outline

1 Overview of Memory Spaces

2 Shared Memory

3 Texture Memory

4 Constant Memory

5 Common Strategy for Memory Accesses

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 21 / 40



Computer Vision Group

Texture Memory

GPUs were originally intended to do computer graphics
Still contain specialized hardware for frequent operations
such as texture mapping

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 22 / 40



Computer Vision Group

Textures

Texture memory is part of
global memory
(Read-only), cached
Global memory reads are
performed through extra
hardware for texture
manipulation

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 23 / 40



Computer Vision Group

Why use Textures?

Data is cached, cache is optimized for 2D spatial locality
Filtering (interpolation) with no additional costs

linear / bilinear / trilinear
Wrap modes with no additional costs

for „out-of-bounds“ addresses
Addressable in 1D, 2D, or 3D

using integer or normalized [0,1) coordinates

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 24 / 40



Computer Vision Group

Texture Usage: Overview

Host (CPU) code:
allocate global memory
create a texture reference object
bind the texture reference to the allocated memory
use texture reference in kernels
when done: unbind texture reference

Device (GPU) code:
fetch (read) using texture reference
tex1D(texRef,x), tex2D(texRef,x,y),
tex3D(texRef,x,y,z)

Work best together with cudaArray (more later)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 25 / 40



Computer Vision Group

Texture Usage: Texture Reference

Define a texture reference at file scope:

texture <Type, Dim, ReadMode> texRef;

Type: int, float, float2, float4, …
Dim: 1, 2, or 3, data dimension
ReadMode:

cudaReadModeElementType for integer-valued textures:
return value as is
cudaReadModeNormalizedFloat for integer-valued textures:
normalize value to [0,1)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 26 / 40



Computer Vision Group

Texture Usage: Set Parameters

Set boundary conditions for x and y
texRef.addressMode[0] = cudaAddressModeClamp;
texRef.addressMode[1] = cudaAddressModeClamp;
cudaAddressModeClamp, cudaAddressModeWrap

Enable/disable filtering
texRef.filterMode = cudaFilterModePoint;
cudaFilterModePoint, cudaFilterModeLinear

Set whether coordinates are normalized to [0, 1)

texRef.normalized = false;

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 27 / 40



Computer Vision Group

Texture Usage: Bind and Unbind

Bind texture to array:
cudaBindTexture2D(NULL, &texRef, ptr, &desc,
width, height, pitch)

ptr: pointer to allocated array in global memory
width: width of array
height: height of array
pitch: pitch of array in bytes, if ptr was allocated using
cudaMalloc, this is width*sizeof(ptr[0])
desc: number of bits for each texture channel, e.g.,
cudaCreateChannelDesc<float>()

Unbind texture:

cudaUnbindTexture(texRef);

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 28 / 40



Computer Vision Group

Textures: Example
1 texture<float,2,cudaReadModeElementType> texRef; // at file scope
2
3 __global__ void kernel (...)
4 {
5 int x = threadIdx.x + blockDim.x*blockIdx.x;
6 int y = threadIdx.y + blockDim.y*blockIdx.y;
7 float val = tex2D(texRef, x+0.5f, y+0.5f); // add 0.5f to get center of pixel
8 ...
9 }
10
11 int main()
12 {
13 ...
14 texRef.addressMode[0] = cudaAddressModeClamp; // clamp x to border
15 texRef.addressMode[1] = cudaAddressModeClamp; // clamp y to border
16 texRef.filterMode = cudaFilterModeLinear; // linear interpolation
17 texRef.normalized = false; // access as (x+0.5f,y+0.5f), not as ((x+0.5f)/w,(y+0.5f)/h)
18 cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();
19 cudaBindTexture2D(NULL, &texRef, d_ptr, &desc, w, h, w*sizeof(d_ptr[0]));
20 kernel <<<grid,block>>> (...);
21 cudaUnbindTexture(texRef);
22 ...
23 }

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 29 / 40



Computer Vision Group

Textures: cudaArray

Textures can use memory stored in a space filling curve

Better texture cache hit rate due to improved 2D locality
Copying data to a cudaArray will cause it to be formatted
to such a curve
{ cudaArray, cudaMallocArray, cudaMemcpyToArray,
cudaBindTextureToArray, cudaFreeArray }

1 cudaArray* cuArray;
2 cudaMallocArray(&cuArray, &channelDesc, width, height);
3 cudaMemcpyToArray(cuArray, 0, 0, h_data, size, cudaMemcpyHostToDevice);
4 cudaBindTextureToArray(texRef, cuArray, channelDesc);
5 ...
6 cuFreeArray(cuArray); // free device memory

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 30 / 40



Computer Vision Group

Surface Memory

Device code (CC ≥ 2.0) can read/write to cudaArray by
using surfaces
See CUDA SDK example simpleSurfaceWrite
Surface operations have

no interpolation or data conversion
but some boundary handling

Some caveats:
texture cache is not notified of cudaArray modifications
similarly, texture cache is also not notified of global memory
modifications
start new kernel to pick up modifications
surface write/reads take x coordinates in byte size

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 31 / 40



Computer Vision Group

Outline

1 Overview of Memory Spaces

2 Shared Memory

3 Texture Memory

4 Constant Memory

5 Common Strategy for Memory Accesses

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 32 / 40



Computer Vision Group

Constant Memory

Part of global memory
Read-only, cached

cache is dedicated
will not be overwritten by
other global memory
reads

Fast!
Limited size, use it to store
a few cruical parameters
(convolution kernel, 4× 4
camera matrix, ...)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 33 / 40



Computer Vision Group

Constant Memory

Defined at file scope
Qualifier: __constant__
Examples:

__constant__ float myparam;
__constant__ float constKernel[KERNEL_SIZE];
array size must be known, no dynamic allocation possible

Reading only on device:
float val = myparam; val = constKernel[0];
Writing only on host:
cudaMemcpyToSymbol(constKernel, h_ptr, szBytes);

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 34 / 40



Computer Vision Group

Outline

1 Overview of Memory Spaces

2 Shared Memory

3 Texture Memory

4 Constant Memory

5 Common Strategy for Memory Accesses

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 35 / 40



Computer Vision Group

Global Memory: Coalescing

Global memory access is slow (400-800 clock cycles)
Hardware coalesces (combines) memory accesses

chunks of size 32 B, 64 B, 128 B
aligned to multiples of 32 B, 64 B, 128 B, respectively

Coalescing is per warp
each thread reads a char: 1B*32 = 32 B chunk
each thread reads a float: 4B*32 = 128 B chunk
each thread reads a int2: 8B*32 = 2*128 B chunks

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 36 / 40



Computer Vision Group

Global Memory: Coalescing

Make sure threads within a warp access
a contiguous memory region
as few 128 B segments as possible

Huge performance hit for non-coalesced accesses
memory accesses per warp will be serialized
worst case: reading chars from random locations

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 37 / 40



Computer Vision Group

Global Memory: Coalescing

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 38 / 40



Computer Vision Group

The Most Important CUDA Optimization
Minimize the number of global memory accesses

they are the slowest operations
essentially the only reason for slow kernel run time
if you access global memory, do it coalesced

Rules of thumb:
neighboring threads must access neighboring elements

array[threadId.x + blockDim.x * blockIdx.x]
(two float arrays are better than one float2 array)

use layered memory layout for multi-channel images
value is used a lot in same thread: load in local variable

even if used just more than once
if one value is used by lots of threads: shared memory

but if used only by 2 or so threads, global mem is still OK

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 39 / 40



Computer Vision Group

Recommended Further Reading
CUDA Programming Guide (linked on course page)

Appendix B.1 – B.4
Chapter 3, sections 3.2.1 – 3.2.3

Best Practices Guide (linked on course page)
Chapter 9, section 9.2

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 40 / 40


	Overview of Memory Spaces
	Shared Memory
	Texture Memory
	Constant Memory
	Common Strategy for Memory Accesses

