

Practical Course: GPU Programming in Computer Vision

Optimization

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

Technische Universität München Department of Informatics Computer Vision Group

Summer Semester 2017 September 11 - October 8

Outline

- Performance metrics of algorithms running on a GPU
 - occupancy
 - data bandwith and instruction throughput
- Maximize instruction throughput
 - branch divergence
- Maximize memory throughput
 - pitched allocation for images
- parallel reduction: an example of optimization

Outline

- Performance metrics of algorithms running on a GPU
 - occupancy
 - data bandwith and instruction throughput
- - branch divergence
- - pitched allocation for images

$$\mbox{occupancy} = \frac{\mbox{active threads}}{\mbox{max. threads per SM}} \label{eq:max}$$

- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread

$$occupancy = \frac{active \ threads}{max. \ threads \ per \ SM}$$

- Multiprocessors (SMs) can have many more active threads than there are CUDA Cores
- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread

$$occupancy = \frac{active \ threads}{max. \ threads \ per \ SM}$$

- Multiprocessors (SMs) can have many more active threads than there are CUDA Cores
- High occupancy is important, because if some threads stall, the SM can switch to others
- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread
 - Shared memory per block

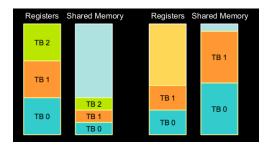
$$occupancy = \frac{active \ threads}{max. \ threads \ per \ SM}$$

- Multiprocessors (SMs) can have many more active threads than there are CUDA Cores
- High occupancy is important, because if some threads stall, the SM can switch to others
- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread
 - Shared memory per block

$$occupancy = \frac{active \ threads}{max. \ threads \ per \ SM}$$

- Multiprocessors (SMs) can have many more active threads than there are CUDA Cores
- High occupancy is important, because if some threads stall, the SM can switch to others
- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread
 - Shared memory per block

Resource limits



- Each block grabs registers and shared memory
- If one or the other is fully utilized: no more blocks per SM possible

Find Out Resource Usage

- Compile with nvcc option -ptxas-options=-v
- Per kernel registers and (static) shared memory:

```
ptxas info: Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'
ptxas info: Used 4 registers, 44 bytes smem
```

Amount of resources per multiprocessor:

Find Out Resource Usage

- Compile with nvcc option -ptxas-options=-v
- Per kernel registers and (static) shared memory:

```
ptxas info: Compiling entry function '_Z10add kernelPfPKfS1_i' for 'sm_10'
ptxas info: Used 4 registers, 44 bytes smem
```

Amount of resources per multiprocessor: ./deviceQuery

data bandwidth: How much data do we process per second?

- Make use of the different types of memory
- Align your 2D array to make use of coalescing

- Trade precision for speed
- Minimize branch divergence

data bandwidth: How much data do we process per second?

- Minimize data transfers with low bandwidth (host device. global memory - device)
- Make use of the different types of memory
- Align your 2D array to make use of coalescing

- Trade precision for speed
- Minimize branch divergence

data bandwidth: How much data do we process per second?

- Minimize data transfers with low bandwidth (host device. global memory - device)
- Make use of the different types of memory
- Align your 2D array to make use of coalescing

instruction throughput: How many instructions do we execute per second?

- Trade precision for speed
- Minimize branch divergence

data bandwidth: How much data do we process per second?

- Minimize data transfers with low bandwidth (host device. global memory - device)
- Make use of the different types of memory
- Align your 2D array to make use of coalescing

instruction throughput: How many instructions do we execute per second?

- Trade precision for speed
- Minimize branch divergence

Outline

- 1 Performance metrics of algorithms running on a GPU
 - occupancy
 - data bandwith and instruction throughput
- 2 Maximize instruction throughput
 - branch divergence
- 3 Maximize memory throughput
 - pitched allocation for images
- 4 parallel reduction: an example of optimization

Reminder: All 32 threads of a warp execute the same instruction. *Always!*

```
1 __global__ void kernel (float *result, float *input)
2 {
3    int i = threadIdx.x + blockDim.x*blockIdx.x;
4    if (input[i]>0)
5        result[i] = 1.f;
6    else
7        result[i] = 0.f;
8 }
```


branch divergence

Reminder: All 32 threads of a warp execute the *same* instruction. *Always!*

```
1 __global__ void kernel (float *result, float *input)
2 {
3    int i = threadIdx.x + blockDim.x*blockIdx.x;
4    if (input[i]>0)
5        result[i] = 1.f;
6    else
7        result[i] = 0.f;
8 }
```

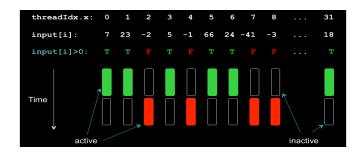

Reminder: All 32 threads of a warp execute the *same* instruction. *Always!*

```
1 __global__ void kernel (float *result, float *input)
2 {
3    int i = threadIdx.x + blockDim.x*blockIdx.x;
4    if (input[i]>0)
5       result[i] = 1.f;
6    else
7       result[i] = 0.f;
8 }
```

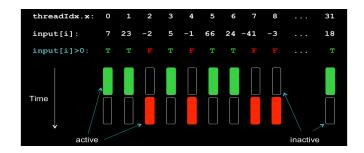

branch divergence

Reminder: All 32 threads of a warp execute the same instruction. Always!

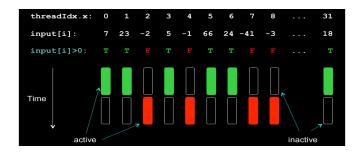
```
1 __global__ void kernel (float *result, float *input)
2 {
3    int i = threadIdx.x + blockDim.x*blockIdx.x;
4    if (input[i]>0)
5       result[i] = 1.f;
6    else
7       result[i] = 0.f;
8 }
```

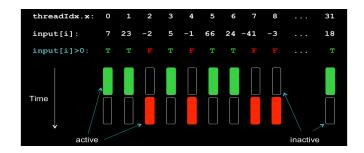
- Each path is taken by each thread.
- The execution of the warp is serialized.



- Each path is taken by each thread.
- The execution of the warp is serialized.



- Each path is taken by each thread.
- Threads that should take an other path are marked inactive.
- The execution of the warp is serialized.



- Each path is taken by each thread.
- Threads that should take an other path are marked inactive.
- The execution of the warp is serialized.

Serialization cont.

- Also happens with the following statements: for, while, switch
- No divergence if all threads take the same path.

Serialization cont.

- Also happens with the following statements: for, while, switch
- Worst case: 1 active thread, 31 inactive ⇒ performance is reduced to $1/32 \approx 3\%$
- No divergence if all threads take the same path.

Serialization cont.

- Also happens with the following statements: for, while, switch
- Worst case: 1 active thread, 31 inactive ⇒ performance is reduced to $1/32 \approx 3\%$
- No divergence if all threads take the same path.

if
$$(tid/32 == 0) {...}$$

Outline

- - occupancy
 - data bandwith and instruction throughput
- - branch divergence
- Maximize memory throughput
 - pitched allocation for images

- one can allocate 2d images as 1d arrays and access in a linearized way: img[x+w*y]
- for a 6*3 float image, the addresses & img[x+6*y] are

48	52	56	60	64	68
24	28	32	36	40	44
0	4	8	12	16	20

- one can allocate 2d images as 1d arrays and access in a linearized way: img[x+w*y]
- this works, but is in general suboptimal for CUDA
- for a 6*3 float image, the addresses & img[x+6*y] are

I	48	52	56	60	64	68
ı	24	28	32	36	40	44
ı	0	4	8	12	16	20

- one can allocate 2d images as 1d arrays and access in a linearized way: img[x+w*v]
- this works, but is in general suboptimal for CUDA
- for a 6*3 float image, the addresses &img[x+6*y] are

48	52	56	60	64	68
24	28	32	36	40	44
0	4	8	12	16	20

- one can allocate 2d images as 1d arrays and access in a linearized way: img[x+w*y]
- this works, but is in general suboptimal for CUDA
- for a 6*3 float image, the addresses &img[x+6*y] are

48	52	56	60	64	68
24	28	32	36	40	44
0	4	8	12	16	20

read/write accesses are fastest when the starting address of each row is a multiple of a big power of 2. (most common: 128)

■ the total new width in bytes is called pitch

64	68	72	76	80	84	88	92
32	36	40	44	48	52	56	60
0	4	8	12	16	20	24	28

- here: pitch = 32 bytes (=8*sizeof(float))
- in general pitch != multiple of element size
 - float3 array

adding padding bytes at the end of each row resolves this

on host: float *d a: size t pitch; cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h); in kernel: ■ Copying: cudaMemcpy2D(...)

For 3D-Data: cudaMalloc3D(...)


```
on host:
  float *d a:
  size t pitch;
  cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h);
in kernel:
  float value =
  *((float*)( (char*)a + x*sizeof(float) + pitch*y) );
■ Copying: cudaMemcpy2D(...)
```

For 3D-Data: cudaMalloc3D(...)

on host:

```
float *d a:
size t pitch;
cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h);
```

in kernel:

```
float value =
*((float*)( (char*)a + x*sizeof(float) + pitch*y) );
```

- Copying: cudaMemcpy2D(...)
- For 3D-Data: cudaMalloc3D(...)

Outline

- 1 Performance metrics of algorithms running on a GPU
 - occupancy
 - data bandwith and instruction throughput
- Maximize instruction throughput
 - branch divergence
- 3 Maximize memory throughput
 - pitched allocation for images
- 4 parallel reduction: an example of optimization

Keep all the SM busy

each block reduces a part of the array but how do we communicate the partial results in an efficient way?

Want to process very large arrays

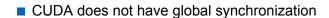
Keep all the SM busy

each block reduces a part of the array but how do we

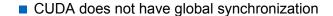
Want to process very large arrays

Keep all the SM busy

each block reduces a part of the array but how do we communicate the partial results in an efficient way?



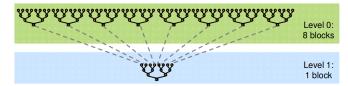
- solution: decompose into multiple kernels and use launch as synchronization point
- two different metrics of performance: bandwidth and GFLOP/s
- Reductions have low arithmetric intensity ⇒ bandwidth is the proper metric



- solution: decompose into multiple kernels and use launch as synchronization point
- two different metrics of performance: bandwidth and GFLOP/s
- Reductions have low arithmetric intensity ⇒ bandwidth is the proper metric

- CUDA does not have global synchronization
- solution: decompose into multiple kernels and use launch as synchronization point
- two different metrics of performance: bandwidth and GFLOP/s
- Reductions have low arithmetric intensity ⇒ bandwidth is the proper metric

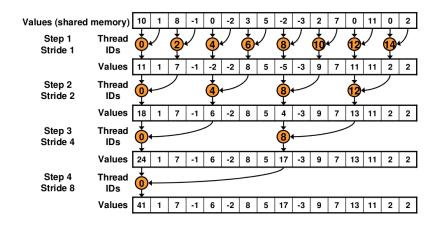
- CUDA does not have global synchronization
- solution: decompose into multiple kernels and use launch as synchronization point
- two different metrics of performance: bandwidth and GFLOP/s
- Reductions have low arithmetric intensity ⇒ bandwidth is the proper metric



A first implementation

```
__global__ void reduce0(int *g_idata, int *g_odata) {
    extern shared int sdata[];
3
    // each thread loads one element from global to shared mem
    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
    sdata[tid] = g_idata[i];
    __syncthreads();
9
10
    // do reduction in shared mem
    for(unsigned int s=1; s < blockDim.x; s *= 2) {</pre>
11
     if (tid % (2*s) == 0) {
       sdata[tid] += sdata[tid + s];
13
14
     __syncthreads();
15
16
17
    // write result for this block to global mem
18
    if (tid == 0) g_odata[blockIdx.x] = sdata[0];
19
    }
20
```


A first implementation



how can we accelerate the code?

hint: branch divergence

how can we accelerate the code?

hint: branch divergence

Just replace divergent branch in inner loop:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

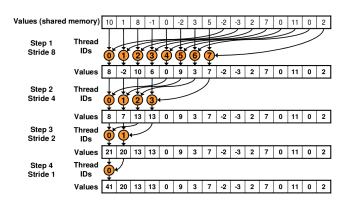
With strided index and non-divergent branch:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
  int index = 2 * s * tid;

  if (index < blockDim.x) {
     sdata[index] += sdata[index + s];
  }
  __syncthreads();
}</pre>
```


- This is already better, but still we can improve a lot.
- Let's take a closer look at the shared memory:
 - On modern GPUs the shared memory is divided into 32 banks.
 - Adresses in different banks can be read at the same time.
 - If different threads within a warp want to read different adresses from a single bank, the accesses are executed in serial.
 - This is commonly referred to as a bank conflict

- This is already better, but still we can improve a lot.
- Let's take a closer look at the shared memory:
 - On modern GPUs the shared memory is divided into 32 banks.
 - Adresses in different banks can be read at the same time.
 - If different threads within a warp want to read different adresses from a single bank, the accesses are executed in serial.
 - This is commonly referred to as a bank conflict



After a few additional optimizations, this is the final speed up:

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

for the full details see:

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf