GPU Programming
in Computer Vision

Thomas Mollenhoff, Robert Maier,
Lingni Ma, Caner Hazirbas

Optimization

Technical University Munich, Computer Vision Group
Winter Semester 2015/2016, March 15 — April 15

Outline

® Branch Divergence

® Pitch Allocation for 2D Images
® Host-Device Memory Transfer
® Occupancy

® See the Programming Guide for more details

BRANCH DIVERGENCE

Branch Divergence

* All 32 threads in a warp execute the same
instruction
¢ always, no matter what

__global void kernel (float *result, float *input)
{
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.£f;
else
result[i] = 0.f; within a warp

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else

* If threads diverge within a warp execution is
serialized

¢ all 32 threads must execute the same instruction

® Each path is taken by each of the 32 threads
* Threads which do not correspond to this path
are marked as inactive during execution

Branch Divergence: Serialization

if (input[i]>0) result[i] = 1.f; else result|[i] = 0.£;

threadIdx.x: O 1 2 3 4 5 6 7 8 .. 31

input[i]: 7 23 -2 5 -1 66 24 -41 -3 .. 18

input[i]>0: T T F T F T T F F e T

- [J {J |I {J |I {] [J |I |I {J
\% A

active inactive

Branch Divergence: Serialization

® Branch serialization occurs whenever the
execution path diverges

0

if / for / while / case

* Potential divergence:
® if (input[x]>0) {...}

® for(int i=0; i<num iters([x]; i++) {...}

* Divergence in different warps: No serialization
* if (threadIdx.x/32==0) {...}

PITCHED ALLOCATION
FOR 2D IMAGES

2D Images: Linear Allocation

)

»

)

One can allocate 2D images as 1D-arrays and access in a
linearized way: img[x+w*y]

This works, but is in general for CUDA
Fora 6*3 float image, the addresses &img[x+6*y] are

48 | 52 | 56 | 60 | 64 | 68

24 | 28 | 32 | 36 | 40 | 44

0O |4 |8 12 | 16 | 20

Read/write accesses are fastest when the starting
address of each row is a multiple of a big power of 2

* atleast 128, or even 512
® reason: requirement for memory coalescing, see later

2D Images: Pitched Allocation

¢ Adding padding bytes at the end of each row resolves this

64 | 68 | 72 | 76 | 80 | 84

32 |36 | 40 | 44 | 48 | 52

0 |4 |8 12 | 16 | 20

* The total new width in bytes is called pitch
® here: pitch = 32 bytes (= 8*sizeof (float))
® in general, pitch != multiple of element size

® example: 10*10 float3 array
* sizeof(float3) = 12, w*sizeof(float3) = 120, pitch = 128

® cudaMallocPitch (void **pointer, size_t *pitch,
size_t widthinBytes, size_t height);

2D Images: Pitched Allocation

®

®

On host:

float *d_a;
size t pitch;
cudaMallocPitch(&d a, &pitch, w*sizeof(float), h);

In kernel:

float wvalue =
((float) ((char*)a + x*sizeof (float) + pitch*y)),

Copying: cudaMemcpy2D(...)
* see NVIDIA Programming Guide

For 3D-Data: cudaMalloc3D()

HOST-DEVICE MEMORY
TRANSFER

Host-Device Memory Transfer

»

Memcpy and vice versa is
* orders of magnitude slower than device-to-device

»

Minimize transfers
* leave data for as long as possible on GPU for processing
¢ only transfer main inputs to GPU, and transfer main outputs back

»

Group transfers
* one large transfer much faster than many small ones

»

Overlap transfers with kernel executions
* if possible by hardware
¢ uses pinned host memory and streams

Pinned Host Memory

® Enables highest memcpy performance
¢ Enables asynchronous memcpy (CC>=1.1)
* Enables direct access from GPU (CC>=1.1)

»

cudaMallocHost (void **pHost, size t size,
unsigned int flags) ;

® cudaFreeHost (void *ptr);

* page-locked, allocating too much may degrade your system

® flags = cudaHostAllocMapped: direct access form GPU
void *pDev; cudaHostGetDevicePointer (&pDev, pHost, 0);

flags = 0: default

»

Asynchronous Memory Copy

L)

L)

L)

Usual cudaMemcpy is blocking
* waits until memcpy is done

cudaMemcpyAsync (dst, src, size, dir, 0);
® asynchronous, non-blocking

cudaMemcpyDeviceToHost, cudaMemcpyHostToDevice
® 0 is the default stream (more later)

Requirement: "pinned"” host memory
+ allocated using cudaMallocHost

OCCUPANCY

Occupancy

* Multiprocessors (SMs) can have many more
active threads than there are CUDA Cores

* High occupancy is important
if some threads stall, the SM can switch to others

* Pool of limited resources per SM

* Occupancy determined by

Register usage per thread
* Shared memory per block

Resource Limits

Registers Shared Memory Registers Shared Memory

B2

B 2
B 1
B0

* Each block grabs registers and shared memory
* If one or the other is fully utilized:
* no more blocks per SM possible

Find Out Resource Usage

* Compile with nvcc option -ptxas-options=-v
* Per kernel registers and (static) shared memory:

ptxas info : Compiling entry function' Z10add_kernelPfPKfS1_i' for 'sm_10'
ptxas info : Used 4 registers, 44 bytes smem

* Amount of resources per multiprocessor:
¢ run deviceQuery

Optimize Algorithms for the GPU

»

Maximize independent parallelism

»

Maximize arithmetic density (math/bandwidth)

»

Sometimes it's better to recompute than to cache
* GPU spends transistors on computation, not memory

»

Do more computation on the GPU to avoid costly
data transfers

¢ Even low parallelism computations can sometimes be
faster than transfering back and forth to/from host

