GPU Programming in Computer Vision

Thomas Möllenhoff, Robert Maier, Lingni Ma, Caner Hazırbaş

Optimization

Technical University Munich, Computer Vision Group Winter Semester 2015/2016, March 15 – April 15

Outline

- Branch Divergence
- Pitch Allocation for 2D Images
- Most-Device Memory Transfer
- Occupancy

See the Programming Guide for more details

BRANCH DIVERGENCE

Branch Divergence

- All 32 threads in a warp execute the same instruction
 - always, no matter what

Branch Divergence: Serialization

```
if (input[i]>0) result[i] = 1.f; else result[i] = 0.f;
```

- If threads diverge within a warp execution is serialized
 - all 32 threads must execute the same instruction
- Each path is taken by each of the 32 threads
- Threads which do not correspond to this path are marked as inactive during execution

Branch Divergence: Serialization

```
(input[i]>0) result[i] = 1.f; else result[i] = 0.f;
                                4 5 6 7
                   1
                            3
threadIdx.x:
                                                             31
               7
                  23
                       -2 5
                                    66 24 -41 -3
input[i]:
                               -1
                                                             18
input[i]>0: T
                   \mathbf{T}
                            \mathbf{T}
                                15
                                     \mathbf{T}
Time
                                                     inactive
         active
```

Branch Divergence: Serialization

- Branch serialization occurs whenever the execution path within a warp diverges
 - if / for / while / case
- Potential divergence:
 - o if (input[x]>0) {...}
 - for(int i=0; i<num_iters[x]; i++) {...}</pre>

- Divergence in different warps: No serialization
 - o if (threadIdx.x/32==0) {...}

PITCHED ALLOCATION FOR 2D IMAGES

2D Images: Linear Allocation

- One can allocate 2D images as 1D-arrays and access in a linearized way: img[x+w*y]
- This works, but is in general suboptimal for CUDA
- For a 6*3 float image, the addresses &img[x+6*y] are

48	52	56	60	64	68
24	28	32	36	40	44
0	4	8	12	16	20

- Read/write accesses are fastest when the starting address of each row is a multiple of a big power of 2
 - at least 128, or even 512
 - reason: requirement for memory coalescing, see later

2D Images: Pitched Allocation

Adding padding bytes at the end of each row resolves this

64	68	72	76	80	84	88	92
32	36	40	44	48	52	56	60
0	4	8	12	16	20	24	28

- The total new width in bytes is called pitch
 - here: pitch = 32 bytes (= 8*sizeof(float))
 - in general, pitch != multiple of element size
 - example: 10*10 float3 array
 - sizeof(float3) = 12, w*sizeof(float3) = 120, pitch = 128
- cudaMallocPitch (void **pointer, size_t *pitch, size_t widthInBytes, size_t height);

2D Images: Pitched Allocation

On host:

```
float *d_a;
size_t pitch;
cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h);
```

In kernel:

```
float value =
 *((float*)( (char*)a + x*sizeof(float) + pitch*y) );
```

- Copying: cudaMemcpy2D(...)
 - see NVIDIA Programming Guide

For 3D-Data: cudaMalloc3D()

HOST-DEVICE MEMORY TRANSFER

Host-Device Memory Transfer

- Memcpy from device to host and vice versa is very slow
 - orders of magnitude slower than device-to-device
- Minimize transfers
 - leave data for as long as possible on GPU for processing
 - only transfer main inputs to GPU, and transfer main outputs back
- Group transfers
 - one large transfer much faster than many small ones
- Overlap transfers with kernel executions
 - if possible by hardware
 - uses pinned host memory and streams

Pinned Host Memory

- Enables highest memcpy performance
- Enables asynchronous memcpy (CC>=1.1)
- Enables direct access from GPU (CC>=1.1)
- cudaMallocHost(void **pHost, size_t size, unsigned int flags);
- cudaFreeHost(void *ptr);
- page-locked, allocating too much may degrade your system
- flags = cudaHostAllocMapped: direct access form GPU
 void *pDev; cudaHostGetDevicePointer(&pDev, pHost, 0);
- flags = 0: default

Asynchronous Memory Copy

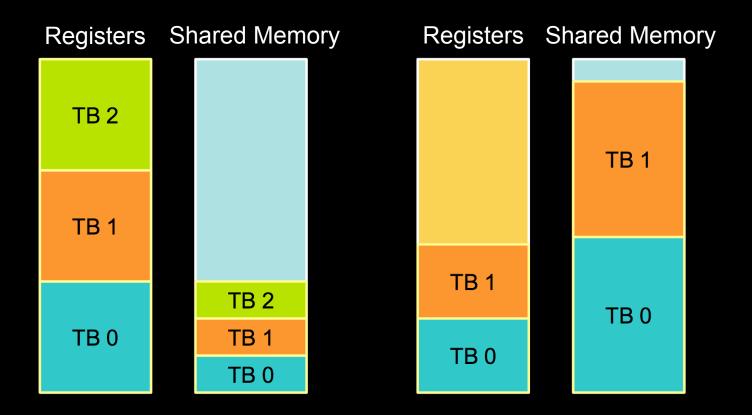
- Usual cudaMemcpy is blocking
 - waits until memcpy is done
- cudaMemcpyAsync(dst, src, size, dir, 0);
 - asynchronous, non-blocking
 - cudaMemcpyDeviceToHost, cudaMemcpyHostToDevice
 - 0 is the default stream (more later)
- Requirement: "pinned" host memory
 - allocated using cudaMallocHost

OCCUPANCY

Occupancy

- Multiprocessors (SMs) can have many more active threads than there are CUDA Cores
- High occupancy is important
 - if some threads stall, the SM can switch to others
- Pool of limited resources per SM
- Occupancy determined by
 - Register usage per thread
 - Shared memory per block

Resource Limits



- Each block grabs registers and shared memory
- If one or the other is fully utilized:
 - no more blocks per SM possible

Find Out Resource Usage

- Compile with nvcc option -ptxas-options=-v
- Per kernel registers and (static) shared memory:

```
ptxas info : Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'
```

ptxas info : Used 4 registers, 44 bytes smem

- Amount of resources per multiprocessor:
 - run deviceQuery

Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic density (math/bandwidth)
- Sometimes it's better to recompute than to cache
 - GPU spends transistors on computation, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transfering back and forth to/from host