Practical Course: GPU Programming in Computer Vision Mathematics 1: Basics

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

Technische Universität München Department of Informatics
Computer Vision Group

Summer Term 2017
September 11 - October 8

Outline

1 images

2 differential operators and convolution

3 discretization

Hatay

Outline

1 images

2 differential operators and convolution

3 discretization

continuous setting

We think of images as (possibly vector-valued) functions that are defined on a continuous domain $\Omega \subset \mathbb{R}^{d}$:

$$
u: \Omega \rightarrow \mathbb{R}^{n}
$$

continuous setting

discrete setting

examples

$$
\text { domain } \Omega \subset \mathbb{R}^{d} \text { (usually rectangular): }
$$

■ $d=2$: image (rectangle)
■ $d=3$: volume, movie (cuboid)
range \mathbb{R}^{n} :

- $n=1$. greyscale images,
- $n=2: 2 D$-vector fields,
- $n=3$: RGB images,
- $n=4$: RGB-D images,

Each dimension of the range is called a channel. We can represent an image with n channels as n stacked single-channel images.

examples

domain $\Omega \subset \mathbb{R}^{d}$ (usually rectangular):

- $d=2$: image (rectangle)

■ $d=3$: volume, movie (cuboid)
range \mathbb{R}^{n} :
■ $n=1$: greyscale images, \ldots
■ $n=2: 2 D$-vector fields, \ldots

- $n=3$: RGB images, \ldots

■ $n=4$: RGB-D images, \ldots

Each dimension of the range is called a channel. We can represent an image with n channels as n stacked single-channel images.

examples

domain $\Omega \subset \mathbb{R}^{d}$ (usually rectangular):
■ $d=2$: image (rectangle)
■ $d=3$: volume, movie (cuboid)
range \mathbb{R}^{n} :
■ $n=1$: greyscale images, \ldots
■ $n=2: 2 D$-vector fields, \ldots

- $n=3$: RGB images, \ldots

■ $n=4$: RGB-D images, \ldots
Each dimension of the range is called a channel. We can represent an image with n channels as n stacked single-channel images.

Outline

1 images

2 differential operators and convolution

3 discretization

partial derivatives

Let's assume we have a two-dimensional domain $\Omega \subset \mathbb{R}^{2}$.

The partial derivatives of a scalar $(d=1)$ image $u: \Omega \rightarrow \mathbb{R}$ at $(x, y) \in \Omega$ is defined in the following way:

$$
\begin{aligned}
& \partial_{x} u: \Omega \rightarrow \mathbb{R}, \quad \partial_{x} u(x, y)=\lim _{h \rightarrow 0} \frac{u(x+h, y)-u(x, y)}{h} \\
& \partial_{y} u: \Omega \rightarrow \mathbb{R}, \quad \partial_{y} u(x, y)=\lim _{h \rightarrow 0} \frac{u(x, y+h)-u(x, y)}{h}
\end{aligned}
$$

gradient

The gradient combines all partial derivatives into a vector:

$$
\nabla u: \Omega \rightarrow \mathbb{R}^{2}, \nabla u(x, y)=\binom{\partial_{x} u(x, y)}{\partial_{y} u(x, y)}
$$

The gradient of a function at a point (x, y) always points in the direction of the steepest increase of u.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: one gradient per channel

gradient

The gradient combines all partial derivatives into a vector:

$$
\nabla u: \Omega \rightarrow \mathbb{R}^{2}, \nabla u(x, y)=\binom{\partial_{x} u(x, y)}{\partial_{y} u(x, y)}
$$

The gradient of a function at a point (x, y) always points in the direction of the steepest increase of u.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: one gradient per channel

gradient

The gradient combines all partial derivatives into a vector:

$$
\nabla u: \Omega \rightarrow \mathbb{R}^{2}, \nabla u(x, y)=\binom{\partial_{x} u(x, y)}{\partial_{y} u(x, y)}
$$

The gradient of a function at a point (x, y) always points in the direction of the steepest increase of u.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: one gradient per channel

$$
\nabla u: \Omega \rightarrow \mathbb{R}^{2 \times n}, \quad \nabla u(x, y)=\left(\nabla u_{1}(x, y), \ldots, \nabla u_{n}(x, y)\right)
$$

gradient norm

the pointwise magnitude of the gradient of an image,

$$
|\nabla u(x, y)|=\sqrt{\partial_{x} u(x, y)^{2}+\partial_{y} u(x, y)^{2}}
$$

may serve as an edge detector.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}:$ Norm over all partial derivatives:

gradient norm

the pointwise magnitude of the gradient of an image,

$$
|\nabla u(x, y)|=\sqrt{\partial_{x} u(x, y)^{2}+\partial_{y} u(x, y)^{2}}
$$

may serve as an edge detector.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}:$ Norm over all partial derivatives:

$$
|\nabla u(x, y)|=\sqrt{\sum_{i=1}^{n}\left|\nabla u_{i}(x, y)\right|^{2}}=\sqrt{\sum_{i=1}^{n} \partial_{x} u_{i}(x, y)^{2}+\partial_{y} u_{i}(x, y)^{2}}
$$

divergence

The divergence of a vector field $u: \Omega \rightarrow \mathbb{R}^{2}$ is defined as

$$
\operatorname{div} u: \Omega \rightarrow \mathbb{R}, \quad \operatorname{div} u(x, y)=\partial_{x} u_{1}(x, y)+\partial_{y} u_{2}(x, y)
$$

Multi-channel 2D-vector fields $u: \Omega \rightarrow \mathbb{R}^{2 \times n}$: divergence per channel

$$
\operatorname{div} u: \Omega \rightarrow \mathbb{R}^{n}, \quad \operatorname{div} u^{\prime}=\left(\operatorname{div} u_{1}, \ldots, \operatorname{div} u_{n}\right)
$$

divergence

The divergence of a vector field $u: \Omega \rightarrow \mathbb{R}^{2}$ is defined as

$$
\operatorname{div} u: \Omega \rightarrow \mathbb{R}, \quad \operatorname{div} u(x, y)=\partial_{x} u_{1}(x, y)+\partial_{y} u_{2}(x, y)
$$

Multi-channel 2D-vector fields $u: \Omega \rightarrow \mathbb{R}^{2 \times n}$: divergence per channel

$$
\operatorname{div} u: \Omega \rightarrow \mathbb{R}^{n}, \quad \operatorname{div} u=\left(\operatorname{div} u_{1}, \ldots, \operatorname{div} u_{n}\right)
$$

Laplacian

The gradient $\nabla u: \Omega \rightarrow \mathbb{R}^{2}$ is a 2 D -vector field and divergence div operates on 2D-vector fields. Thus we can concatenate these two operators. The result is the Laplacian:

$$
\begin{gathered}
\Delta u: \Omega \rightarrow \mathbb{R}, \quad \Delta u:=\operatorname{div}(\nabla u)=\operatorname{div}\binom{\partial_{x} u}{\partial_{y} u} \\
\Delta u(x, y)=\partial_{x x} u(x, y)+\partial_{y y} u(x, y)
\end{gathered}
$$

There is a physical interpretation of the Laplacian: For example, if $u(x, y)$ denotes the temperature at point (x, y), then $\Delta u(x, y)$ is the rate of local temperature decrease/increase: $\partial_{t} u(x, y)=a \Delta u(x, y)$ for some constant $a>0$.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: channel-wise

Laplacian

The gradient $\nabla u: \Omega \rightarrow \mathbb{R}^{2}$ is a 2D-vector field and divergence div operates on 2D-vector fields. Thus we can concatenate these two operators. The result is the Laplacian:

$$
\begin{gathered}
\Delta u: \Omega \rightarrow \mathbb{R}, \quad \Delta u:=\operatorname{div}(\nabla u)=\operatorname{div}\binom{\partial_{x} u}{\partial_{y} u} \\
\Delta u(x, y)=\partial_{x x} u(x, y)+\partial_{y y} u(x, y)
\end{gathered}
$$

There is a physical interpretation of the Laplacian: For example, if $u(x, y)$ denotes the temperature at point (x, y), then $\Delta u(x, y)$ is the rate of local temperature decrease/increase: $\partial_{t} u(x, y)=a \Delta u(x, y)$ for some constant $a>0$.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: channel-wise

Laplacian

The gradient $\nabla u: \Omega \rightarrow \mathbb{R}^{2}$ is a 2D-vector field and divergence div operates on 2D-vector fields. Thus we can concatenate these two operators. The result is the Laplacian:

$$
\begin{gathered}
\Delta u: \Omega \rightarrow \mathbb{R}, \quad \Delta u:=\operatorname{div}(\nabla u)=\operatorname{div}\binom{\partial_{x} u}{\partial_{y} u} \\
\Delta u(x, y)=\partial_{x x} u(x, y)+\partial_{y y} u(x, y)
\end{gathered}
$$

There is a physical interpretation of the Laplacian: For example, if $u(x, y)$ denotes the temperature at point (x, y), then $\Delta u(x, y)$ is the rate of local temperature decrease/increase: $\partial_{t} u(x, y)=a \Delta u(x, y)$ for some constant $a>0$.

Multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$: channel-wise

convolution

Convolution computes a weighted 'sum' of the image values.

convolution

Given a kernel $k: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an image $u: \Omega \rightarrow \mathbb{R}$, the convolution between k and u is defined by:

$$
k * u: \Omega \rightarrow \mathbb{R}^{n}, \quad(k * u)(x, y)=\int_{\mathbb{R}^{2}} k(a, b) u(x-a, y-b) \mathrm{d} a \mathrm{~d} b
$$

For multi-channel images the convolution is computed channel-wise.

definition of u outide of Ω :

To compute a convolution, we need values of u outside of the image domain
Ω. There are a few different ways to extend u :

- clamping of (x, y) back to Ω (Neumann boundary conditions)
- periodic intensity
- mirrored intensity

convolution

Given a kernel $k: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an image $u: \Omega \rightarrow \mathbb{R}$, the convolution between k and u is defined by:

$$
k * u: \Omega \rightarrow \mathbb{R}^{n}, \quad(k * u)(x, y)=\int_{\mathbb{R}^{2}} k(a, b) u(x-a, y-b) \mathrm{d} a \mathrm{~d} b
$$

For multi-channel images the convolution is computed channel-wise.
definition of u outside of Ω :
To compute a convolution, we need values of u outside of the image domain
Ω. There are a few different ways to extend u :

- clamping of (x, y) back to Ω (Neumann boundary conditions)
- periodic intensity
- mirrored intensity

convolution

Given a kernel $k: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and an image $u: \Omega \rightarrow \mathbb{R}$, the convolution between k and u is defined by:

$$
k * u: \Omega \rightarrow \mathbb{R}^{n}, \quad(k * u)(x, y)=\int_{\mathbb{R}^{2}} k(a, b) u(x-a, y-b) \mathrm{d} a \mathrm{~d} b
$$

For multi-channel images the convolution is computed channel-wise.

definition of u outside of Ω :

To compute a convolution, we need values of u outside of the image domain
Ω. There are a few different ways to extend u :

- clamping of (x, y) back to Ω (Neumann boundary conditions)
- periodic intensity
- mirrored intensity

kernel

2D-Gaussian kernel with standard deviation $\sigma>0$

$$
k(a, b)=G_{\sigma}(a, b)=\frac{1}{2 \pi \sigma^{2}} \mathrm{e}^{-\frac{a^{2}+b^{2}}{2 \sigma^{2}}}
$$

Hata

Outline

1 images

2 differential operators and convolution

3 discretization

discretization: images

The image domain $\Omega \subset \mathbb{R}^{2}$ is discretized into a 2D-grid of $w \times h$ pixels. Caution: in a slight abuse of notation we denote both the continuous image and its discretization with u.

Linearized storage for scalar images $u: \Omega \rightarrow \mathbb{R}$
The wh values $u(x, y)$ are arranged into a single one-dimensional array u in a row-major order:
$u(1, h), u(2, h), \ldots, u(w-1, h))$
Linearized access

$$
u(x, y)=u[x+w \cdot y]
$$

discretization: images

The image domain $\Omega \subset \mathbb{R}^{2}$ is discretized into a 2D-grid of $w \times h$ pixels. Caution: in a slight abuse of notation we denote both the continuous image and its discretization with u.

Linearized storage for scalar images $u: \Omega \rightarrow \mathbb{R}$
The wh values $u(x, y)$ are arranged into a single one-dimensional array u in a row-major order:

$$
\begin{aligned}
u=(& u(0,0), u(1,0), u(2,0), \ldots, u(w-1,0) \\
& u(0,1), u(1,1), u(2,1), \ldots, u(w-1,1) \\
& \ldots, \\
& u(1, h), u(2, h), \ldots, u(w-1, h))
\end{aligned}
$$

discretization: images

The image domain $\Omega \subset \mathbb{R}^{2}$ is discretized into a 2D-grid of $w \times h$ pixels. Caution: in a slight abuse of notation we denote both the continuous image and its discretization with u.

Linearized storage for scalar images $u: \Omega \rightarrow \mathbb{R}$
The wh values $u(x, y)$ are arranged into a single one-dimensional array u in a row-major order:

$$
\begin{aligned}
u= & (u(0,0), u(1,0), u(2,0), \ldots, u(w-1,0) \\
& u(0,1), u(1,1), u(2,1), \ldots, u(w-1,1) \\
& \cdots, \\
& u(1, h), u(2, h), \ldots, u(w-1, h))
\end{aligned}
$$

Linearized access

$$
u(x, y)=u[x+w \cdot y]
$$

discretization images

Linearized storage of multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$
The nwh values $u_{i}(x, y)$ are arranged into a single one-dimensional array.
The n channels u_{i} are stored directly one after another

$$
u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

and, as previously, each channel u_{i} is stored in row-major order.

This is called layered storage in contrast to interleaved storage, where one save thes n values $u_{i}(x, y)$ pixel-by-pixel

Linearized access for layered storage
$u_{i}(x, y)=u[x+w \cdot y+w h \cdot i]$

discretization images

Linearized storage of multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$
The $n w h$ values $u_{i}(x, y)$ are arranged into a single one-dimensional array.
The n channels u_{i} are stored directly one after another

$$
u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

and, as previously, each channel u_{i} is stored in row-major order.
This is called layered storage in contrast to interleaved storage, where one save thes n values $u_{i}(x, y)$ pixel-by-pixel.

Linearized access for layered storage

$$
\left.u_{i}(x, y)=u^{r} x+w \cdot y+w h \cdot i\right]
$$

discretization images

Linearized storage of multi-channel images $u: \Omega \rightarrow \mathbb{R}^{n}$
The $n w h$ values $u_{i}(x, y)$ are arranged into a single one-dimensional array.
The n channels u_{i} are stored directly one after another

$$
u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

and, as previously, each channel u_{i} is stored in row-major order.
This is called layered storage in contrast to interleaved storage, where one save thes n values $u_{i}(x, y)$ pixel-by-pixel.

Linearized access for layered storage

$$
u_{i}(x, y)=u[x+w \cdot y+w h \cdot i]
$$

partial derivatives and gradient

In the discrete setting, we approximate the partial derivatives using forward differences with Neumann boundary conditions

$$
\begin{aligned}
\partial_{x}^{+} u(x, y) & = \begin{cases}u(x+1, y)-u(x, y), & \text { if } x+1<w \\
0, & \text { else }\end{cases} \\
\partial_{y}^{+} u(x, y) & = \begin{cases}u(x, y+1)-u(x, y), & \text { if } y+1<h \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Thus we obtain a discretization of the gradient:

partial derivatives and gradient

In the discrete setting, we approximate the partial derivatives using forward differences with Neumann boundary conditions

$$
\begin{aligned}
\partial_{x}^{+} u(x, y) & = \begin{cases}u(x+1, y)-u(x, y), & \text { if } x+1<w \\
0, & \text { else }\end{cases} \\
\partial_{y}^{+} u(x, y) & = \begin{cases}u(x, y+1)-u(x, y), & \text { if } y+1<h \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Thus we obtain a discretization of the gradient:

$$
\nabla^{+} u(x, y)=\binom{\partial_{x}^{+} u(x, y)}{\partial_{y}^{+} u(x, y)}
$$

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

If values $u(x, y)$ in pixels outside of Ω are needed, clamp (x, y) back to Ω.

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

$$
\begin{aligned}
\partial_{x}^{r}(x, y)= & \frac{1}{32}(3 u(x+1, y+1)+10 u(x+1, y)+3 u(x+1, y-1) \\
& -3 u(x-1, y+1)-10 u(x-1, y)-3 u(x-1, y-1)) \\
\partial_{y}^{r}(x, y)= & \frac{1}{32}(3 u(x+1, y+1)+10 u(x, y+1)+3 u(x-1, y+1) \\
& -3 u(x+1, y-1)-10 u(x, y-1)-3 u(x-1, y-1))
\end{aligned}
$$

If values $u(x, y)$ in pixels outside of Ω are needed, clamp (x, y) back to Ω.

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

$$
\begin{aligned}
\partial_{x}^{r}(x, y)= & \frac{1}{32}(3 u(x+1, y+1)+10 u(x+1, y)+3 u(x+1, y-1) \\
& -3 u(x-1, y+1)-10 u(x-1, y)-3 u(x-1, y-1)) \\
\partial_{y}^{r}(x, y)= & \frac{1}{32}(3 u(x+1, y+1)+10 u(x, y+1)+3 u(x-1, y+1) \\
& -3 u(x+1, y-1)-10 u(x, y-1)-3 u(x-1, y-1))
\end{aligned}
$$

If values $u(x, y)$ in pixels outside of Ω are needed, clamp (x, y) back to Ω.

divergence

We discretize the divergence using backward differences:

$$
\operatorname{div}^{-} u(x, y)=\partial_{x}^{-} u_{1}(x, y)+\partial_{y}^{-} u_{2}(x, y)
$$

With the backward differences ∂_{x}^{-}and ∂_{y}^{-}defined as:

divergence

We discretize the divergence using backward differences:

$$
\operatorname{div}^{-} u(x, y)=\partial_{x}^{-} u_{1}(x, y)+\partial_{y}^{-} u_{2}(x, y)
$$

With the backward differences ∂_{x}^{-}and ∂_{y}^{-}defined as:

$$
\begin{aligned}
& \partial_{x}^{-} u(x, y)= \begin{cases}u(x, y)-u(x-1, y), & \text { if } x>0 \\
0, & \text { else }\end{cases} \\
& \partial_{y}^{-} u(x, y)= \begin{cases}u(x, y)-u(x, y-1), & \text { if } y>0 \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Laplacian

Using the discretizations ∇^{+}and div $^{-}$we obtain a discretization of the Laplacian:

$$
\Delta u=\operatorname{div}^{-}\left(\nabla^{+} u\right)=\partial_{x}^{-}\left(\partial_{x}^{+} u\right)+\partial_{y}^{-}\left(\partial_{y}^{+} u\right)
$$

One can check that

where we define (and similarly for other factors):

Laplacian

Using the discretizations ∇^{+}and div $^{-}$we obtain a discretization of the Laplacian:

$$
\Delta u=\operatorname{div}^{-}\left(\nabla^{+} u\right)=\partial_{x}^{-}\left(\partial_{x}^{+} u\right)+\partial_{y}^{-}\left(\partial_{y}^{+} u\right)
$$

One can check that

$$
\begin{aligned}
\Delta u(x, y)= & \mathbf{1}_{x+1<w} \cdot u(x+1, y)+\mathbf{1}_{x>0} \cdot u(x-1, y) \\
& +\mathbf{1}_{y+1<h} \cdot u(x, y+1)+\mathbf{1}_{y>0} \cdot u(x, y-1) \\
& -\left(\mathbf{1}_{x+1<w}+\mathbf{1}_{x>0}+\mathbf{1}_{y+1<h}+\mathbf{1}_{y>0}\right) \cdot u(x, y),
\end{aligned}
$$

where we define (and similarly for other factors):

otherwise.

Laplacian

Using the discretizations ∇^{+}and div $^{-}$we obtain a discretization of the Laplacian:

$$
\Delta u=\operatorname{div}^{-}\left(\nabla^{+} u\right)=\partial_{x}^{-}\left(\partial_{x}^{+} u\right)+\partial_{y}^{-}\left(\partial_{y}^{+} u\right)
$$

One can check that

$$
\begin{aligned}
\Delta u(x, y)= & \mathbf{1}_{x+1<w} \cdot u(x+1, y)+\mathbf{1}_{x>0} \cdot u(x-1, y) \\
& +\mathbf{1}_{y+1<h} \cdot u(x, y+1)+\mathbf{1}_{y>0} \cdot u(x, y-1) \\
& -\left(\mathbf{1}_{x+1<w}+\mathbf{1}_{x>0}+\mathbf{1}_{y+1<h}+\mathbf{1}_{y>0}\right) \cdot u(x, y),
\end{aligned}
$$

where we define (and similarly for other factors):

$$
\mathbf{1}_{x+1<w}= \begin{cases}1, & \text { if } x+1<w, \\ 0, & \text { otherwise } .\end{cases}
$$

convolution

discretization

Let S_{k} be the support of k, that is positions (a, b) with $k(a, b) \neq 0$. Thus we write the convolution in the discrete setting as:

$$
(k * u)(x, y)=\sum_{(a, b) \in S_{k}} k(a, b) \cdot u(x-a, y-b)
$$

windowing
Often, the support of k lies within a small window of size $\left(2 r_{x}+1\right) \times\left(2 r_{y}+1\right)$ In this case we have:

convolution

discretization

Let S_{k} be the support of k, that is positions (a, b) with $k(a, b) \neq 0$. Thus we write the convolution in the discrete setting as:

$$
(k * u)(x, y)=\sum_{(a, b) \in S_{k}} k(a, b) \cdot u(x-a, y-b) .
$$

windowing

Often, the support of k lies within a small window of size $\left(2 r_{x}+1\right) \times\left(2 r_{y}+1\right)$. In this case we have:

$$
(k * u)(x, y)=\sum_{a=-r_{x}}^{r_{x}} \sum_{b=-r_{y}}^{r_{y}} k(a, b) \cdot u(x-a, y-b)
$$

