
Computer Vision Group

Practical Course: GPU Programming in Computer Vision
Mathematics 1: Basics

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

Technische Universität München
Department of Informatics
Computer Vision Group

Summer Term 2017
September 11 - October 8

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 1 / 22

Computer Vision Group

Outline

1 images

2 differential operators and convolution

3 discretization

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 2 / 22

Computer Vision Group

Outline

1 images

2 differential operators and convolution

3 discretization

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 3 / 22

Computer Vision Group

continuous setting

We think of images as (possibly vector-valued) functions that are defined on
a continuous domain Ω ⊂ Rd:

u : Ω → Rn

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 4 / 22

Computer Vision Group

examples

domain Ω ⊂ Rd (usually rectangular):

d = 2: image (rectangle)

d = 3: volume, movie (cuboid)

range Rn:

n = 1: greyscale images, ...

n = 2: 2D-vector fields, ...
n = 3: RGB images, ...

n = 4: RGB-D images, ...

Each dimension of the range is called a channel. We can represent an image
with n channels as n stacked single-channel images.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 5 / 22

Computer Vision Group

examples

domain Ω ⊂ Rd (usually rectangular):

d = 2: image (rectangle)

d = 3: volume, movie (cuboid)

range Rn:

n = 1: greyscale images, ...

n = 2: 2D-vector fields, ...
n = 3: RGB images, ...

n = 4: RGB-D images, ...

Each dimension of the range is called a channel. We can represent an image
with n channels as n stacked single-channel images.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 5 / 22

Computer Vision Group

examples

domain Ω ⊂ Rd (usually rectangular):

d = 2: image (rectangle)

d = 3: volume, movie (cuboid)

range Rn:

n = 1: greyscale images, ...

n = 2: 2D-vector fields, ...
n = 3: RGB images, ...

n = 4: RGB-D images, ...

Each dimension of the range is called a channel. We can represent an image
with n channels as n stacked single-channel images.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 5 / 22

Computer Vision Group

Outline

1 images

2 differential operators and convolution

3 discretization

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 6 / 22

Computer Vision Group

partial derivatives

Let’s assume we have a two-dimensional domain Ω ⊂ R2.

The partial derivatives of a scalar (d = 1) image u : Ω → R at (x, y) ∈ Ω is
defined in the following way:

∂xu : Ω → R, ∂xu(x, y) = lim
h→0

u(x+ h, y)− u(x, y)
h

∂yu : Ω → R, ∂yu(x, y) = lim
h→0

u(x, y+ h)− u(x, y)
h

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 7 / 22

Computer Vision Group

gradient

The gradient combines all partial derivatives into a vector:

∇u : Ω → R2,∇u(x, y) =
(
∂xu(x, y)
∂yu(x, y)

)

The gradient of a function at a point (x, y) always points in the direction of the
steepest increase of u.

Multi-channel images u : Ω → Rn: one gradient per channel

∇u : Ω → R2×n, ∇u(x, y) = (∇u1(x, y), . . . ,∇un(x, y))

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 8 / 22

Computer Vision Group

gradient

The gradient combines all partial derivatives into a vector:

∇u : Ω → R2,∇u(x, y) =
(
∂xu(x, y)
∂yu(x, y)

)

The gradient of a function at a point (x, y) always points in the direction of the
steepest increase of u.

Multi-channel images u : Ω → Rn: one gradient per channel

∇u : Ω → R2×n, ∇u(x, y) = (∇u1(x, y), . . . ,∇un(x, y))

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 8 / 22

Computer Vision Group

gradient

The gradient combines all partial derivatives into a vector:

∇u : Ω → R2,∇u(x, y) =
(
∂xu(x, y)
∂yu(x, y)

)

The gradient of a function at a point (x, y) always points in the direction of the
steepest increase of u.

Multi-channel images u : Ω → Rn: one gradient per channel

∇u : Ω → R2×n, ∇u(x, y) = (∇u1(x, y), . . . ,∇un(x, y))

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 8 / 22

Computer Vision Group

gradient norm

the pointwise magnitude of the gradient of an image,

|∇u(x, y)| =
√

∂xu(x, y)2 + ∂yu(x, y)2,

may serve as an edge detector.

Multi-channel images u : Ω → Rn : Norm over all partial derivatives:

|∇u(x, y)| =

√√√√ n∑
i=1

|∇ui(x, y)|2 =

√√√√ n∑
i=1

∂xui(x, y)2 + ∂yui(x, y)2

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 9 / 22

Computer Vision Group

gradient norm

the pointwise magnitude of the gradient of an image,

|∇u(x, y)| =
√

∂xu(x, y)2 + ∂yu(x, y)2,

may serve as an edge detector.

Multi-channel images u : Ω → Rn : Norm over all partial derivatives:

|∇u(x, y)| =

√√√√ n∑
i=1

|∇ui(x, y)|2 =

√√√√ n∑
i=1

∂xui(x, y)2 + ∂yui(x, y)2

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 9 / 22

Computer Vision Group

divergence

The divergence of a vector field u : Ω → R2 is defined as

div u : Ω → R, div u(x, y) = ∂xu1(x, y) + ∂yu2(x, y)

Multi-channel 2D-vector fields u : Ω → R2×n: divergence per channel

div u : Ω → Rn, div u = (div u1, . . . , div un)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 10 / 22

Computer Vision Group

divergence

The divergence of a vector field u : Ω → R2 is defined as

div u : Ω → R, div u(x, y) = ∂xu1(x, y) + ∂yu2(x, y)

Multi-channel 2D-vector fields u : Ω → R2×n: divergence per channel

div u : Ω → Rn, div u = (div u1, . . . , div un)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 10 / 22

Computer Vision Group

Laplacian

The gradient ∇u : Ω → R2 is a 2D-vector field and divergence div operates
on 2D-vector fields. Thus we can concatenate these two operators. The
result is the Laplacian:

∆u : Ω → R, ∆u := div(∇u) = div
(
∂xu
∂yu

)
∆u(x, y) = ∂xxu(x, y) + ∂yyu(x, y)

There is a physical interpretation of the Laplacian: For example, if u(x, y)
denotes the temperature at point (x, y), then ∆u(x, y) is the rate of local
temperature decrease/increase: ∂tu(x, y) = a∆u(x, y) for some constant
a > 0.

Multi-channel images u : Ω → Rn: channel-wise

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 11 / 22

Computer Vision Group

Laplacian

The gradient ∇u : Ω → R2 is a 2D-vector field and divergence div operates
on 2D-vector fields. Thus we can concatenate these two operators. The
result is the Laplacian:

∆u : Ω → R, ∆u := div(∇u) = div
(
∂xu
∂yu

)
∆u(x, y) = ∂xxu(x, y) + ∂yyu(x, y)

There is a physical interpretation of the Laplacian: For example, if u(x, y)
denotes the temperature at point (x, y), then ∆u(x, y) is the rate of local
temperature decrease/increase: ∂tu(x, y) = a∆u(x, y) for some constant
a > 0.

Multi-channel images u : Ω → Rn: channel-wise

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 11 / 22

Computer Vision Group

Laplacian

The gradient ∇u : Ω → R2 is a 2D-vector field and divergence div operates
on 2D-vector fields. Thus we can concatenate these two operators. The
result is the Laplacian:

∆u : Ω → R, ∆u := div(∇u) = div
(
∂xu
∂yu

)
∆u(x, y) = ∂xxu(x, y) + ∂yyu(x, y)

There is a physical interpretation of the Laplacian: For example, if u(x, y)
denotes the temperature at point (x, y), then ∆u(x, y) is the rate of local
temperature decrease/increase: ∂tu(x, y) = a∆u(x, y) for some constant
a > 0.

Multi-channel images u : Ω → Rn: channel-wise

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 11 / 22

Computer Vision Group

convolution

Convolution computes a weighted ’sum’ of the image values.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 12 / 22

Computer Vision Group

convolution

Given a kernel k : R2 → R and an image u : Ω → R, the convolution between
k and u is defined by:

k ∗ u : Ω → Rn, (k ∗ u)(x, y) =
∫
R2

k(a, b)u(x− a, y− b) dadb

For multi-channel images the convolution is computed channel-wise.

definition of u outside of Ω:
To compute a convolution, we need values of u outside of the image domain
Ω. There are a few different ways to extend u:

clamping of (x, y) back to Ω (Neumann boundary conditions)
periodic intensity
mirrored intensity

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 13 / 22

Computer Vision Group

convolution

Given a kernel k : R2 → R and an image u : Ω → R, the convolution between
k and u is defined by:

k ∗ u : Ω → Rn, (k ∗ u)(x, y) =
∫
R2

k(a, b)u(x− a, y− b) dadb

For multi-channel images the convolution is computed channel-wise.

definition of u outside of Ω:
To compute a convolution, we need values of u outside of the image domain
Ω. There are a few different ways to extend u:

clamping of (x, y) back to Ω (Neumann boundary conditions)
periodic intensity
mirrored intensity

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 13 / 22

Computer Vision Group

convolution

Given a kernel k : R2 → R and an image u : Ω → R, the convolution between
k and u is defined by:

k ∗ u : Ω → Rn, (k ∗ u)(x, y) =
∫
R2

k(a, b)u(x− a, y− b) dadb

For multi-channel images the convolution is computed channel-wise.

definition of u outside of Ω:
To compute a convolution, we need values of u outside of the image domain
Ω. There are a few different ways to extend u:

clamping of (x, y) back to Ω (Neumann boundary conditions)
periodic intensity
mirrored intensity

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 13 / 22

Computer Vision Group

kernel

2D-Gaussian kernel with standard deviation σ > 0

k(a, b) = Gσ(a, b) =
1

2πσ2
e−

a2+b2
2σ2

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 14 / 22

Computer Vision Group

Outline

1 images

2 differential operators and convolution

3 discretization

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 15 / 22

Computer Vision Group

discretization: images

The image domain Ω ⊂ R2 is discretized into a 2D-grid of w× h pixels.
Caution: in a slight abuse of notation we denote both the continuous image
and its discretization with u.

Linearized storage for scalar images u : Ω → R
The wh values u(x, y) are arranged into a single one-dimensional array u in a
row-major order:

u =
(
u(0, 0), u(1, 0), u(2, 0), . . . , u(w− 1, 0),

u(0, 1), u(1, 1), u(2, 1), . . . , u(w− 1, 1),

. . . ,

u(1, h), u(2, h), . . . , u(w− 1, h)
)

Linearized access
u(x, y) = u[x+ w · y]

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 16 / 22

Computer Vision Group

discretization: images

The image domain Ω ⊂ R2 is discretized into a 2D-grid of w× h pixels.
Caution: in a slight abuse of notation we denote both the continuous image
and its discretization with u.

Linearized storage for scalar images u : Ω → R
The wh values u(x, y) are arranged into a single one-dimensional array u in a
row-major order:

u =
(
u(0, 0), u(1, 0), u(2, 0), . . . , u(w− 1, 0),

u(0, 1), u(1, 1), u(2, 1), . . . , u(w− 1, 1),

. . . ,

u(1, h), u(2, h), . . . , u(w− 1, h)
)

Linearized access
u(x, y) = u[x+ w · y]

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 16 / 22

Computer Vision Group

discretization: images

The image domain Ω ⊂ R2 is discretized into a 2D-grid of w× h pixels.
Caution: in a slight abuse of notation we denote both the continuous image
and its discretization with u.

Linearized storage for scalar images u : Ω → R
The wh values u(x, y) are arranged into a single one-dimensional array u in a
row-major order:

u =
(
u(0, 0), u(1, 0), u(2, 0), . . . , u(w− 1, 0),

u(0, 1), u(1, 1), u(2, 1), . . . , u(w− 1, 1),

. . . ,

u(1, h), u(2, h), . . . , u(w− 1, h)
)

Linearized access
u(x, y) = u[x+ w · y]

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 16 / 22

Computer Vision Group

discretization images

Linearized storage of multi-channel images u : Ω → Rn

The nwh values ui(x, y) are arranged into a single one-dimensional array.
The n channels ui are stored directly one after another

u = (u1, u2, ..., un).

and, as previously, each channel ui is stored in row-major order.

This is called layered storage in contrast to interleaved storage, where one
save thes n values ui(x, y) pixel-by-pixel.

Linearized access for layered storage

ui(x, y) = u[x+ w · y+ wh · i]

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 17 / 22

Computer Vision Group

discretization images

Linearized storage of multi-channel images u : Ω → Rn

The nwh values ui(x, y) are arranged into a single one-dimensional array.
The n channels ui are stored directly one after another

u = (u1, u2, ..., un).

and, as previously, each channel ui is stored in row-major order.

This is called layered storage in contrast to interleaved storage, where one
save thes n values ui(x, y) pixel-by-pixel.

Linearized access for layered storage

ui(x, y) = u[x+ w · y+ wh · i]

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 17 / 22

Computer Vision Group

discretization images

Linearized storage of multi-channel images u : Ω → Rn

The nwh values ui(x, y) are arranged into a single one-dimensional array.
The n channels ui are stored directly one after another

u = (u1, u2, ..., un).

and, as previously, each channel ui is stored in row-major order.

This is called layered storage in contrast to interleaved storage, where one
save thes n values ui(x, y) pixel-by-pixel.

Linearized access for layered storage

ui(x, y) = u[x+ w · y+ wh · i]

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 17 / 22

Computer Vision Group

partial derivatives and gradient

In the discrete setting, we approximate the partial derivatives using forward
differences with Neumann boundary conditions

∂+
x u(x, y) =

{
u(x+ 1, y)− u(x, y), if x+ 1 < w
0, else

∂+
y u(x, y) =

{
u(x, y+ 1)− u(x, y), if y+ 1 < h
0, else

Thus we obtain a discretization of the gradient:

∇+u(x, y) =
(
∂+
x u(x, y)

∂+
y u(x, y)

)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 18 / 22

Computer Vision Group

partial derivatives and gradient

In the discrete setting, we approximate the partial derivatives using forward
differences with Neumann boundary conditions

∂+
x u(x, y) =

{
u(x+ 1, y)− u(x, y), if x+ 1 < w
0, else

∂+
y u(x, y) =

{
u(x, y+ 1)− u(x, y), if y+ 1 < h
0, else

Thus we obtain a discretization of the gradient:

∇+u(x, y) =
(
∂+
x u(x, y)

∂+
y u(x, y)

)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 18 / 22

Computer Vision Group

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

∂r
x(x, y) =

1

32

(
3u(x+ 1, y+ 1) + 10u(x+ 1, y) + 3u(x+ 1, y− 1)

− 3u(x− 1, y+ 1)− 10u(x− 1, y)− 3u(x− 1, y− 1)
)

∂r
y(x, y) =

1

32

(
3u(x+ 1, y+ 1) + 10u(x, y+ 1) + 3u(x− 1, y+ 1)

− 3u(x+ 1, y− 1)− 10u(x, y− 1)− 3u(x− 1, y− 1)
)

If values u(x, y) in pixels outside of Ω are needed, clamp (x, y) back to Ω.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 19 / 22

Computer Vision Group

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

∂r
x(x, y) =

1

32

(
3u(x+ 1, y+ 1) + 10u(x+ 1, y) + 3u(x+ 1, y− 1)

− 3u(x− 1, y+ 1)− 10u(x− 1, y)− 3u(x− 1, y− 1)
)

∂r
y(x, y) =

1

32

(
3u(x+ 1, y+ 1) + 10u(x, y+ 1) + 3u(x− 1, y+ 1)

− 3u(x+ 1, y− 1)− 10u(x, y− 1)− 3u(x− 1, y− 1)
)

If values u(x, y) in pixels outside of Ω are needed, clamp (x, y) back to Ω.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 19 / 22

Computer Vision Group

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

∂r
x(x, y) =

1

32

(
3u(x+ 1, y+ 1) + 10u(x+ 1, y) + 3u(x+ 1, y− 1)

− 3u(x− 1, y+ 1)− 10u(x− 1, y)− 3u(x− 1, y− 1)
)

∂r
y(x, y) =

1

32

(
3u(x+ 1, y+ 1) + 10u(x, y+ 1) + 3u(x− 1, y+ 1)

− 3u(x+ 1, y− 1)− 10u(x, y− 1)− 3u(x− 1, y− 1)
)

If values u(x, y) in pixels outside of Ω are needed, clamp (x, y) back to Ω.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 19 / 22

Computer Vision Group

divergence

We discretize the divergence using backward differences:

div− u(x, y) = ∂−
x u1(x, y) + ∂−

y u2(x, y)

With the backward differences ∂−
x and ∂−

y defined as:

∂−
x u(x, y) =

{
u(x, y)− u(x− 1, y), if x > 0

0, else

∂−
y u(x, y) =

{
u(x, y)− u(x, y− 1), if y > 0

0, else

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 20 / 22

Computer Vision Group

divergence

We discretize the divergence using backward differences:

div− u(x, y) = ∂−
x u1(x, y) + ∂−

y u2(x, y)

With the backward differences ∂−
x and ∂−

y defined as:

∂−
x u(x, y) =

{
u(x, y)− u(x− 1, y), if x > 0

0, else

∂−
y u(x, y) =

{
u(x, y)− u(x, y− 1), if y > 0

0, else

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 20 / 22

Computer Vision Group

Laplacian

Using the discretizations ∇+ and div− we obtain a discretization of the
Laplacian:

∆u = div−(∇+u) = ∂−
x (∂+

x u) + ∂−
y (∂+

y u)

One can check that

∆u(x, y) =1x+1<w · u(x+ 1, y) + 1x>0 · u(x− 1, y)
+ 1y+1<h · u(x, y+ 1) + 1y>0 · u(x, y− 1)

− (1x+1<w + 1x>0 + 1y+1<h + 1y>0) · u(x, y),

where we define (and similarly for other factors):

1x+1<w =

{
1, if x+ 1 < w,
0, otherwise.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 21 / 22

Computer Vision Group

Laplacian

Using the discretizations ∇+ and div− we obtain a discretization of the
Laplacian:

∆u = div−(∇+u) = ∂−
x (∂+

x u) + ∂−
y (∂+

y u)

One can check that

∆u(x, y) =1x+1<w · u(x+ 1, y) + 1x>0 · u(x− 1, y)
+ 1y+1<h · u(x, y+ 1) + 1y>0 · u(x, y− 1)

− (1x+1<w + 1x>0 + 1y+1<h + 1y>0) · u(x, y),

where we define (and similarly for other factors):

1x+1<w =

{
1, if x+ 1 < w,
0, otherwise.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 21 / 22

Computer Vision Group

Laplacian

Using the discretizations ∇+ and div− we obtain a discretization of the
Laplacian:

∆u = div−(∇+u) = ∂−
x (∂+

x u) + ∂−
y (∂+

y u)

One can check that

∆u(x, y) =1x+1<w · u(x+ 1, y) + 1x>0 · u(x− 1, y)
+ 1y+1<h · u(x, y+ 1) + 1y>0 · u(x, y− 1)

− (1x+1<w + 1x>0 + 1y+1<h + 1y>0) · u(x, y),

where we define (and similarly for other factors):

1x+1<w =

{
1, if x+ 1 < w,
0, otherwise.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 21 / 22

Computer Vision Group

convolution

discretization
Let Sk be the support of k, that is positions (a, b) with k(a, b) ̸= 0. Thus we
write the convolution in the discrete setting as:

(k ∗ u)(x, y) =
∑

(a,b)∈Sk

k(a, b) · u(x− a, y− b).

windowing
Often, the support of k lies within a small window of size (2rx + 1)× (2ry + 1).
In this case we have:

(k ∗ u)(x, y) =
rx∑

a=−rx

ry∑
b=−ry

k(a, b) · u(x− a, y− b).

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 22 / 22

Computer Vision Group

convolution

discretization
Let Sk be the support of k, that is positions (a, b) with k(a, b) ̸= 0. Thus we
write the convolution in the discrete setting as:

(k ∗ u)(x, y) =
∑

(a,b)∈Sk

k(a, b) · u(x− a, y− b).

windowing
Often, the support of k lies within a small window of size (2rx + 1)× (2ry + 1).
In this case we have:

(k ∗ u)(x, y) =
rx∑

a=−rx

ry∑
b=−ry

k(a, b) · u(x− a, y− b).

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 22 / 22

	images
	differential operators and convolution
	discretization

