Camputer Vision Group

Practical Course: GPU Programming in Computer Vision
Mathematics 1: Basics

Bjorn Hafner, Benedikt Léwenhauser, Thomas Mdollenhoff

Technische Universitat Miinchen
Department of Informatics
Computer Vision Group

Summer Term 2017
September 11 - October 8

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 1/22

Camputer Vision Group

Tim

Technische Universitat Minchen

Outline

images

differential operators and convolution

discretization

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision

2/22

Camputer Vision Group Tm

Technische Universitat Minchen

Outline

images

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 3/22

Camputer Vision Group Tm

Technische Universitat Minchen

continuous setting

We think of images as (possibly vector-valued) functions that are defined on
a continuous domain Q C RY:

u:Q—R’

continuous setting discrete setting

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 4122

Camputer Vision Group Tm

Technische Universitat Minchen

examples
domain Q c RY (usually rectangular):
m d = 2: image (rectangle)
m d = 3: volume, movie (cuboid)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 5/22

Camputer Vision Group

versitat Manchen

examples

domain Q c RY (usually rectangular):
m d = 2: image (rectangle)
m d = 3: volume, movie (cuboid)

range R":
m n = 1: greyscale images, ...
m n = 2: 2D-vector fields, ...
m n = 3: RGB images, ...
m n = 4: RGB-D images, ...

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision

5/22

Camputer Vision Group

versitat Manchen

examples

domain Q c RY (usually rectangular):
m d = 2: image (rectangle)

m d = 3: volume, movie (cuboid)

range R":
m n = 1: greyscale images, ...
m n = 2: 2D-vector fields, ...
m n = 3: RGB images, ...
m n = 4: RGB-D images, ...

Each dimension of the range is called a channel. We can represent an image
with n channels as n stacked single-channel images.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 5/22

Camputer Vision Group Tm

Technische Universitat Minchen

Outline

differential operators and convolution

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 6/22

Camputer Vision Group

partial derivatives

Let's assume we have a two-dimensional domain Q c R2.

The partial derivatives of a scalar (d = 1)image u: Q2 — Rat (x,y) € Qis
defined in the following way:

i Q =R, Gu(xy) = lim u(x + h,yg —u(x.y)

du: Qo R, Gu(xy) = lim ux.y+ h,)1 —ux.y)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 7122

Camputer Vision Group Tm

Technische Universitat Minchen

gradient

The gradient combines all partial derivatives into a vector:

|) _(dxu(x,y)
Vu:Q — R’ Vu(x,y) = (ayu(x, y)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 8/22

Camputer Vision Group

gradient

The gradient combines all partial derivatives into a vector:

|) _(dxu(x,y)
Vu:Q — R’ Vu(x,y) = (ayu(x, y)

The gradient of a function at a point (x, y) always points in the direction of the
steepest increase of u.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 8/22

Camputer Vision Group

gradient

The gradient combines all partial derivatives into a vector:

|) _(dxu(x,y)
Vu:Q — R’ Vu(x,y) = (ayu(x, y)

The gradient of a function at a point (x, y) always points in the direction of the
steepest increase of u.

Multi-channel images u : 2 — R": one gradient per channel

Vu:Q—=R¥™ Vu(x,y) = (Vui(x,y),..., Vun(X,y))

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 8/22

Camputer Vision Group

Technische Universitat Minchen

gradient norm
the pointwise magnitude of the gradient of an image,
|VU(X7 y)| = \/axU(X7 y)2 + 6yU(X, y)27

may serve as an edge detector.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 9/22

Camputer Vision Group

gradient norm
the pointwise magnitude of the gradient of an image,
|VU(X7 y)| = \/axU(X7 y)2 + 8yU(X, y)27

may serve as an edge detector.

Multi-channel images u : Q — R" : Norm over all partial derivatives:

n

Vu)| = | SIVu)2 = |3 etnlx,)2 + dyui(x,y)?

i=1 i=1

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 9/22

Camputer Vision Group Tm

Technische Universitat Minchen

divergence
The divergence of a vector field u : Q — R? is defined as

divu: Q =R, divu(x,y) = dui(x,y) + Oyu2(x,y)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 10/22

Camputer Vision Group

versitat Manchen

divergence
The divergence of a vector field u : Q — R? is defined as

divu: Q =R, divu(x,y) = dui(x,y) + Oyu2(x,y)

Multi-channel 2D-vector fields u : © — R?*": divergence per channel

divu:Q—R", divu= (divus,...,divu,)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 10/22

Camputer Vision Group

Laplacian

The gradient Vu : Q — R? is a 2D-vector field and divergence div operates
on 2D-vector fields. Thus we can concatenate these two operators. The
result is the Laplacian:

Au:Q >R, Au:=div(Vu) = div (3X“>
oyu

AU(X, y) = axxu(x, y) + ayyu(X, y)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 11/22

Camputer Vision Group

Laplacian

The gradient Vu : Q — R? is a 2D-vector field and divergence div operates
on 2D-vector fields. Thus we can concatenate these two operators. The
result is the Laplacian:

Au:Q >R, Au:=div(Vu) = div (3X“>
oyu

AU(X, y) = axxu(x, y) + ayyu(x, y)

There is a physical interpretation of the Laplacian: For example, if u(x, y)
denotes the temperature at point (x, y), then Au(x, y) is the rate of local
temperature decrease/increase: d:u(x, y) = aAu(x, y) for some constant
a>o.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 11/22

Camputer Vision Group

Laplacian

The gradient Vu : Q — R? is a 2D-vector field and divergence div operates
on 2D-vector fields. Thus we can concatenate these two operators. The
result is the Laplacian:

Au:Q >R, Au:=div(Vu) = div (3X“>
oyu

AU(X, y) = axxu(x, y) + ayyu(x, y)
There is a physical interpretation of the Laplacian: For example, if u(x, y)
denotes the temperature at point (x, y), then Au(x, y) is the rate of local

temperature decrease/increase: d:u(x, y) = aAu(x, y) for some constant
a>o.

Multi-channel images u : Q — R": channel-wise

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 11/22

Camputer Vision Group

convolution

Convolution computes a weighted 'sum’ of the image values.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 12/22

Camputer Vision Group

convolution

Given a kernel k : R? — R and an image u : Q — R, the convolution between
k and u is defined by:

kxu:Q—R" (k*u)(x,y):/

k(a,b)u(x —a,y — b)dadb
R2

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 13/22

Camputer Vision Group

convolution

Given a kernel k : R? — R and an image u : Q — R, the convolution between
k and u is defined by:

kxu:Q—R" (k*u)(x,y):/

k(a,b)u(x —a,y — b)dadb
R2

For multi-channel images the convolution is computed channel-wise.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 13/22

Camputer Vision Group

convolution

Given a kernel k : R? — R and an image u : Q — R, the convolution between
k and u is defined by:

kxu:Q—R", (k*u)(x,y):/ k(a,b)u(x — a,y — b)dadb

R2

For multi-channel images the convolution is computed channel-wise.

definition of u outside of Q:
To compute a convolution, we need values of u outside of the image domain
Q. There are a few different ways to extend u:

m clamping of (x,y) back to 2 (Neumann boundary conditions)
m periodic intensity
®m mirrored intensity

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 13/22

Camputer Vision Group Tm

Technische Universitat Minchen

kernel

2D-Gaussian kernel with standard deviation o > 0

1 _a?4b?
K(a,b) = G (a,b) = 5 e~ 2ot

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 141722

Camputer Vision Group Tm

Technische Universitat Minchen

Outline

discretization

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 15/22

Camputer Vision Group

discretization: images

The image domain © C R? is discretized into a 2D-grid of w x h pixels.
Caution: in a slight abuse of notation we denote both the continuous image
and its discretization with u.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 16/22

Camputer Vision Group

discretization: images

The image domain © C R? is discretized into a 2D-grid of w x h pixels.
Caution: in a slight abuse of notation we denote both the continuous image
and its discretization with u.

Linearized storage for scalar images u:) —» R
The wh values u(x, y) are arranged into a single one-dimensional array u in a
row-major order:

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 16/22

Camputer Vision Group

discretization: images

The image domain © C R? is discretized into a 2D-grid of w x h pixels.
Caution: in a slight abuse of notation we denote both the continuous image
and its discretization with u.

Linearized storage for scalar images u:) —» R
The wh values u(x, y) are arranged into a single one-dimensional array u in a
row-major order:

u = (u(0,0),u(1,0),u(2,0),...,u(w—1,0),
u(0,1),u(1,1),u(2,1),...,uw—1,1),

l:l&l,h),u(Q,h), cu(w—1,h))

Linearized access
u(x.y) = ulx+w-y]

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 16/22

Tim

Compuiter Vision Group e Ut e

discretization images

Linearized storage of multi-channel images v : Q) — R”
The nwh values u;(x, y) are arranged into a single one-dimensional array.
The n channels u; are stored directly one after another

u= (U1,Usz,...,Un).

and, as previously, each channel u; is stored in row-major order.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 17122

Camputer Vision Group Tm

Technische Universitat Minchen

discretization images

Linearized storage of multi-channel images v : Q) — R”
The nwh values u;(x, y) are arranged into a single one-dimensional array.
The n channels u; are stored directly one after another

u= (U1,Usz,...,Un).

and, as previously, each channel u; is stored in row-major order.

This is called layered storage in contrast to interleaved storage, where one
save thes n values u;(x, y) pixel-by-pixel.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 17122

Technische Universitat Minchen

Camputer Vision Group Tm

discretization images

Linearized storage of multi-channel images v : Q) — R”
The nwh values u;(x, y) are arranged into a single one-dimensional array.
The n channels u; are stored directly one after another

u= (U1,Usz,...,Un).

and, as previously, each channel u; is stored in row-major order.

This is called layered storage in contrast to interleaved storage, where one
save thes n values u;(x, y) pixel-by-pixel.

Linearized access for layered storage

ui(x,y) = ulx+w-y+wh-i

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 17122

Camputer Vision Group

partial derivatives and gradient

In the discrete setting, we approximate the partial derivatives using forward

differences with Neumann boundary conditions

a;LU(X,Y) = {(L)I(X"‘r LY) — Uy,

8;—U(X,y) _ {g(X7y+ 1) - U(X,y),

fx+1<w
else

ify+1<h
else

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision

18122

Camputer Vision Group

partial derivatives and gradient

In the discrete setting, we approximate the partial derivatives using forward
differences with Neumann boundary conditions

K uxy) = {U(X+1’y) —u(x,y), ifx+l<w

0, else

ux,y+1) —u(x,y), ify+1<h
8y+u<x,y>={0(STy

Thus we obtain a discretization of the gradient:

+
= (552

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 181722

Camputer Vision Group

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 19/22

Camputer Vision Group

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

A(x,y) = (3u(x+1 y+1)+10u(x+1,y) + 3u(x+ 1,y — 1)
—3u(x—1,y+ 1) —10u(x — 1,y) —3u(x — 1,y — 1))

oy(x,y) = (3u(x+1 y+1)+10u(x,y+1)+3u(x—1,y+1)
—3u(x+1,y—1)—10u(x,y—1)—3u(x—1,y—1))

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision

191722

Camputer Vision Group

rotationally robust gradient

A more rotationally robust discretization of the partial derivatives:

A(x,y) = (3u(x+1 y+1)+10u(x+1,y) + 3u(x+ 1,y — 1)
—3u(x—1,y+ 1) —10u(x — 1,y) —3u(x — 1,y — 1))

oy(x,y) = (3u(x+1 y+1)+10u(x,y+1)+3u(x—1,y+1)
—3u(x+1,y—1)—10u(x,y—1)—3u(x—1,y—1))

If values u(x, y) in pixels outside of 2 are needed, clamp (x, y) back to Q.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 19/22

Camputer Vision Group Tm

Technische Universitat Minchen

divergence
We discretize the divergence using backward differences:

div™ u(x,y) = 0 u1(x,y) + 9, ua2(X,)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 20/22

Camputer Vision Group

divergence
We discretize the divergence using backward differences:

div™ u(x,y) = 0 u1(x,y) + 9, ua2(X,)

With the backward differences 05 and 0, defined as:

—u(x—1 if
Srux.y) = {U(x,y) ux—1y), x>0
0, else
- U(X,y)-u(X,y—l% Ify>0
0, LY) =
y ux.y) {O, else

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 20/22

Camputer Vision Group

Technische Universitat Minchen

Laplacian

Using the discretizations V* and div™ we obtain a discretization of the
Laplacian:
Au=div (V'u) =9, (8 u) + 9, (9, u)

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 21/22

Camputer Vision Group

Laplacian

Using the discretizations V* and div™ we obtain a discretization of the
Laplacian:
Au=div (V'u) =9, (8 u) + 9, (9, u)

One can check that

Au(x,y) =lxpi<w - UX+ 1,¥) + 1xso - U(X = 1,¥)
+ 1ppicn - UGY+ 1) + 1yso - u(x,y — 1)
— (Ler1<w+ Liso + Lyp1<n + 1ys0) - (X, y),

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 21/22

Camputer Vision Group

Laplacian

Using the discretizations V* and div™ we obtain a discretization of the
Laplacian:
Au=div (V'u) =9, (8 u) + 9, (9, u)

One can check that

Au(x,y) =lxpi<w - UX+ 1,¥) + 1xso - U(X = 1,¥)
+ 1ypicn - UG Y + 1) + 1yso - U(x,y — 1)
— (Ler1<w+ Liso + Lyp1<n + 1ys0) - (X, y),

where we define (and similarly for other factors):

1 L ifx+1<w,
YT N0, otherwise.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 21/22

Camputer Vision Group

convolution

discretization
Let Sk be the support of k, that is positions (a, b) with k(a, b) # 0. Thus we
write the convolution in the discrete setting as:

(k=u)(x,y) = >_ k(a,b)-u(x—a,y—b).

(a,b)e Sk

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 22/22

Camputer Vision Group

convolution

discretization
Let Sk be the support of k, that is positions (a, b) with k(a, b) # 0. Thus we
write the convolution in the discrete setting as:

(k=u)(x,y) = >_ k(a,b)-u(x—a,y—b).

(a,b) €Sk

windowing
Often, the support of k lies within a small window of size (2rc + 1) x (2r, + 1).
In this case we have:

(k* u)(x Z Zkab u(x—a,y—b).

a=—rxb=—r,

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 22/22

	images
	differential operators and convolution
	discretization

