vt Computer Vision Group

Practical Course: GPU Programming in
Computer Vision
Mathematics 3: Diffusion

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff

Technische Universitat Miinchen
Department of Informatics
Computer Vision Group

Summer Semester 2017
September 11 - October 8

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 1/15

vte» Computer Vision Group

Image Evolutions

Image evolutions
Consider images which evolve over time

u:QCR?x[0,7] —R" (1)

i.e. the image u is now depending on three parameters (x, y, f)
and with indicate this writing u(x, y, t).

Discretized view

Generate a sequence of images u¥: Q — R fork=0,...,n:

WO ut uPu, (2)

Example
Algorithm generating an image sequence where each newly
generated image uft! is based on the previous image(s)
k k=1
u UL

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 2/15

vte» Computer Vision Group

Diffusion

as Image Evolution

For simplicity let us assume u: Q C R? x [0, T] — R" are
grayscale images, i.e. n = 1. Later we will generalize to
multi-channel images, i.e. n > 1.

Diffusion
Continuous time update equation

o = div (DVxu) , (3)

where Vy is the gradient operator, but only w.r.t. the spatial
variables x, y.

D:Qx [0, T] — R**? s called the diffusion tensor and is a
symmetric, positive definite matrix. Note that D is depending on
(x,y,1),i.e. D= D(x,y,t). Thus, D(x, y,t) may be different
V(x,y,t).

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 3/15

Computer Vision Group

Diffusion

Intuition

oiu = div (DVu) , (3)

Diffusion tries to locally cancel out any existing color
differences, thus the evolution of the image u gradually
becomes more and more smooth while time passes. Varying D
one can change how the image will be smoothed. More about

this later...

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 4/15

vte» Computer Vision Group

Diffusion

Discretization and Implementation steps

Temporal derivative
Use forward differences ;" with a time step 7 > 0

uxtt+71)—uxyt
T

(O u) (x, ¥, 1) =

(4)

Spatial derivative
Use forward differences for V, and backward differences for
div,

div™ (DV;U) = 6)(_ (Du&;{u + Dlga;_U) +6y_ (Dglﬁju + Dgga;_U) .
(5)

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 5/15

vte. Computer Vision Group

Diffusion

Discretization and Implementation steps

Thus, using (4) and (3) we get the Gradient Descent
algorithm

ux,tt+7)=u(xyt)+ rdiv(DVyu(x,y,t)). (6)
Implementation steps
Compute the gradient of u per pixel: G = Vi u € R?
Compute the diffusion tensor per pixel: D = - .. € R?*?
Compute the product of D with G per pixel: P=D - G € R?
Compute the divergence P per pixel: d =div (P) € R
Use d to calculate (6) per pixel: vt =ul + 7 - d

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 6/15

Computer Vision Group

Diffusion

Diffusion Tensor

Depending how D is chosen, different types of diffusion can
occur
Linear or non-linear
m Linear: D does not depend on u
m Non-linear: D does depend on u
Isotropic or Anisotropic
m Isotropic: D is a multiple of the identity matrix, i.e.

10
g0y, € B D0yt = g0t (1)
m Anisotropic: Any diffusion which is not isotropic.
Each diffusion is either linear or nonlinear, and either isotropic
or anisotropic:
I isotropic | anisotropic
linear linear isotropic linear anisotropic
non-linear || non-linear isotropic | non-linear anisotropic

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 7/15

Computer Vision Group

Diffusion

Diffusion Tensor
Isotropic diffusion spreads the values u equally in x- and
y-direction.
m Laplace diffusion
m Huber diffusion

Whereas anisotropic diffusion can selectively suppress
information flow in certain directions

m Structure Tensor Diffusion (only smooth u along potential
edges, and not across.)

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 8/15

vte» Computer Vision Group

Diffusion

Laplace Diffusion
Using
10
Duxyt= (5 1))

results in so called Laplace Diffusion. It is linear isotropic
diffusion and the resulting equation is

O = div (Vyu) = Au (8)

It has the effect of blurring the input image similar to a
Gaussian convolution.

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 9/15

vt Computer Vision Group

Diffusion

Laplace Diffusion

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 10/15

vte. Computer Vision Group

Diffusion
Huber Diffusion
Using
10
Dute)= gt (). ©
with 1
gx,y,t) (10)

~ max (e, |IVu(x,y,0])

results in so called Huber Diffusion. It is non-linear isotropic
diffusion as g is depending on u and the resulting equation is

o = div (g(x, y,) Vxu) (11)

It has the effect of smoothing the input image where no large
gradients of u occur and smooths less where large gradients of
u occur.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 11/15

Computer Vision Group

Diffusion

Huber Diffusion

t =100 t =200 t =400

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 12/15

vte. Computer Vision Group

Diffusion

Structure Tensor Diffusion
Using
DS(X7 Y t) = G(X7 Y, t) = Mlele{ + u?eQG;— € R2X27 (12)

with e; and e being the eigenvectors of the structure tensor
(cp. yesterdays maths slides) and

Hr = a, (13)

pa = oz+(1—a)exp<—(>\1_c>\2)2), (14)

€ (0,1), C > 0, results in a linear anisotropic diffusion with
o = div (G(x, y, t)Vxu) (15)

It has the effect of smoothing along the direction of the image
structures.

Bjorn Hafner, Benedikt Léwenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 13/15

Diffusion

Structure Tensor Diffusion

t=20 t=40 t=100 t =200

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 14 /15

Computer Vision Group

Diffusion

Laplace Diffusion

Inputatt=20

t=20 t=40 t=100 t =200

Bjorn Hafner, Benedikt Lowenhauser, Thomas Méllenhoff: GPU Programming in Computer Vision 15/15

