
Computer Vision Group

Practical Course: GPU Programming in
Computer Vision

Mathematics 3: Diffusion

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

Technische Universität München
Department of Informatics
Computer Vision Group

Summer Semester 2017
September 11 - October 8

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 1 / 15



Computer Vision Group

Image Evolutions
Image evolutions
Consider images which evolve over time

u : Ω ⊂ R2 × [0,T] → Rn, (1)

i.e. the image u is now depending on three parameters (x, y, t)
and with indicate this writing u(x, y, t).
Discretized view
Generate a sequence of images uk : Ω → Rn for k = 0, . . . , n:

u0,u1,u2,u3, . . . (2)

Example
Algorithm generating an image sequence where each newly
generated image uk+1 is based on the previous image(s)
uk,uk−1, . . .
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Diffusion
as Image Evolution

For simplicity let us assume u : Ω ⊂ R2 × [0,T] → Rn are
grayscale images, i.e. n = 1. Later we will generalize to
multi-channel images, i.e. n ≥ 1.

Diffusion
Continuous time update equation

∂tu = div (D∇xu) , (3)

where ∇x is the gradient operator, but only w.r.t. the spatial
variables x, y.
D : Ω× [0,T] → R2×2 is called the diffusion tensor and is a
symmetric, positive definite matrix. Note that D is depending on
(x, y, t), i.e. D = D(x, y, t). Thus, D(x, y, t) may be different
∀(x, y, t).
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Diffusion
Intuition

∂tu = div (D∇xu) , (3)

Diffusion tries to locally cancel out any existing color
differences, thus the evolution of the image u gradually
becomes more and more smooth while time passes. Varying D
one can change how the image will be smoothed. More about
this later...
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Diffusion
Discretization and Implementation steps

Temporal derivative
Use forward differences ∂+

t with a time step τ > 0

(
∂+
t u

)
(x, y, t) =

u (x, t, t+ τ)− u (x, y, t)
τ

(4)

Spatial derivative
Use forward differences for ∇x and backward differences for
div,

div−
(
D∇+

x u
)
= ∂−

x
(
D11∂

+
x u+ D12∂

+
y u

)
+∂−

y
(
D21∂

+
x u+ D22∂

+
y u

)
.

(5)

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 5 / 15



Computer Vision Group

Diffusion
Discretization and Implementation steps

Thus, using (4) and (3) we get the Gradient Descent
algorithm

u (x, t, t+ τ) = u (x, y, t) + τ div (D∇xu (x, y, t)) . (6)

Implementation steps

1 Compute the gradient of u per pixel: G = ∇+
x u ∈ R2

2 Compute the diffusion tensor per pixel: D = · · · ∈ R2×2

3 Compute the product of D with G per pixel: P = D ·G ∈ R2

4 Compute the divergence P per pixel: d = div−(P) ∈ R
5 Use d to calculate (6) per pixel: ut+1 = ut + τ · d
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Diffusion
Diffusion Tensor

Depending how D is chosen, different types of diffusion can
occur

1 Linear or non-linear
Linear: D does not depend on u
Non-linear: D does depend on u

2 Isotropic or Anisotropic
Isotropic: D is a multiple of the identity matrix, i.e.

∃g(x, y, t) ∈ R : D(x, y, t) = g(x, y, t) ·
(
1 0
0 1

)
Anisotropic: Any diffusion which is not isotropic.

Each diffusion is either linear or nonlinear, and either isotropic
or anisotropic:

isotropic anisotropic
linear linear isotropic linear anisotropic
non-linear non-linear isotropic non-linear anisotropic
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Diffusion
Diffusion Tensor

Isotropic diffusion spreads the values u equally in x- and
y-direction.

Laplace diffusion
Huber diffusion

Whereas anisotropic diffusion can selectively suppress
information flow in certain directions

Structure Tensor Diffusion (only smooth u along potential
edges, and not across.)
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Diffusion
Laplace Diffusion

Using

DL(x, y, t) :=
(
1 0
0 1

)
(7)

results in so called Laplace Diffusion. It is linear isotropic
diffusion and the resulting equation is

∂tu = div (∇xu) = ∆u (8)

It has the effect of blurring the input image similar to a
Gaussian convolution.
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Diffusion
Laplace Diffusion

Input at t = 0 t = 2 t = 4

t = 10 t = 20 t = 40

t = 100 t = 200 t = 400
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Diffusion
Huber Diffusion

Using

DH(x, y, t) := g(x, y, t)
(
1 0
0 1

)
, (9)

with
g(x, y, t) :=

1

max (ε, ∥∇u (x, y, t)∥)
. (10)

results in so called Huber Diffusion. It is non-linear isotropic
diffusion as g is depending on u and the resulting equation is

∂tu = div (g(x, y, t)∇xu) (11)

It has the effect of smoothing the input image where no large
gradients of u occur and smooths less where large gradients of
u occur.
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Diffusion
Huber Diffusion

Input at t = 0 t = 2 t = 4

t = 10 t = 20 t = 40

t = 100 t = 200 t = 400
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Diffusion
Structure Tensor Diffusion

Using

DS(x, y, t) := G(x, y, t) = µ1e1eT1 + µ2e2eT2 ∈ R2×2, (12)

with e1 and e2 being the eigenvectors of the structure tensor
(cp. yesterdays maths slides) and

µ1 = α, (13)

µ2 = α+ (1− α)exp
(
− C
(λ1 − λ2)

2

)
, (14)

α ∈ (0, 1), C > 0, results in a linear anisotropic diffusion with

∂tu = div (G(x, y, t)∇xu) (15)

It has the effect of smoothing along the direction of the image
structures.

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 13 / 15



Computer Vision Group

Diffusion
Structure Tensor Diffusion

Input at t = 0 t = 2 t = 4 t = 10

t = 20 t = 40 t = 100 t = 200

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff: GPU Programming in Computer Vision 14 / 15



Computer Vision Group

Diffusion
Laplace Diffusion

Input at t = 0 t = 2 t = 4 t = 10

t = 20 t = 40 t = 100 t = 200
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