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• So far: Boosting as an ensemble learning 
method, i.e.: a combination of (weak) learners 

• A different way to combine classifiers is known 
as bagging (“bootstrap aggregating”) 

• Idea: sample M “bootstrap” data sets (sub sets) 
with replacement from the training set and 
train different models 

• Overall classifier is then the average over all 
models:
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Bagging

Bagging reduces the expected error. E.g. in 
regression: 

• Expected error: 

• Average error over all (weak) learners: 

• Average error of committee:
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Bagging

Bagging reduces the expected error. E.g. in 
regression: 

• Expected error: 

• Average error over all weak learners (indep.): 

• In contrast: average error of committee:
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Bagging

Bagging reduces the expected error. E.g. in 
regression: 

• Expected error: 

• Average error over all (weak) learners: 

• Average error of committee if learners are 
uncorrelated:
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Random Forests

Given: training set of size N

1. Randomly sample n ≤ N elements from training 
set with replacement (repetitions likely) 

2. Randomly select a subset of p features (p<d) 

3. Pick from those the feature that produces the   
best split of the data  

4. Perform the split and go back to 2. 

5. If maximum tree depth is reached: 

6.      If number of trees M is reached then stop. 

7. Else: go to 1. building a new tree.
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Random Forests

• Each bag is a subset of the entire training data 

• Repetitions are very likely  

Note: in this figure, repetitions are not shown
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Performance of Random Forests

The error rate depends on two main aspects: 

• the correlation between any two trees: 
high correlation → high error rate 

• the strength of each tree (low error per tree) 
higher strength → lower overall error rate 

These values are mainly influenced by p: 

• If p is low: correlation and strength are low 

• If p is high: correlation and strength are high 

There is usually an “optimal range” of p
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Splitting Criterion

• Aim: split such that both data sub sets contain 
samples that are as pure as possible 

• Possible impurity values: 

•misclassification error: let π be the prob of class 1 
(binary classification), i.e. 
then use 

•Gini index: 

•Deviance: 

•For regression trees we can use the mean-squared 
error     
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Properties of Random Forests

• They reduce the variance of the classification 
estimate, by training several trees on randomly 
sampled subsets of the data (“bagging”) 

• They tend to give uncorrelated trees by 
randomly sampling the features (splits) 

• They can not overfit! One can use as many 
trees as required 

• Only restriction is memory 

• Random Forests have very good accuracy and 
are widely used, e.g. for body pose recognition

10



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Advantages of Random Forests

• One of the best classifiers in general 

• Runs very efficiently on large data sets 

• Can handle thousands of feature dimensions 

• Can provide importance of variables 

• Generates an unbiased estimate of the error 

• Can deal with missing data 

• Implicitly generates proximities of pairs of data 
samples, useful e.g. for clustering 

• Can be extended to unlabeled data
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Out-of-Bag (OOB) Error

• All samples that are not used to train a tree are 
called the out-of-bag data 

• These samples can be used to evaluate the 
overall random forest without an additional 
validation set
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Out-of-Bag (OOB) Error

• All samples that are not used to train a tree are 
called the out-of-bag data 

• This is done by evaluating each tree with its 
own out-of-bag data
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Variable Importance

Idea: rate variables (features) according to their 
potential to change the tree structure 

Method: 

1.compute tree impurity    (sum of node impurities 

of leaf nodes per tree) for each tree m=1,…,M 

2.for all features j=1,…,d: permute the jth feature 
value in the out-of-bag data 

3.compute tree impurity of the permuted data 

4.compute the difference of tree impurity:
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Variable Importance

Idea: rate variables (features) according to their 
potential to change the tree structure 

Method: 

1.compute tree impurity    (sum of node impurities 

of leaf nodes per tree) for each tree m=1,…,M 

2.for all features j=1,…,d: permute the jth feature 
value in the out-of-bag data 

3.compute tree impurity of the permuted data 

4.compute the difference of tree impurity 

5.variable importance is:
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• Boosting uses weak classifiers and turns them 

into a strong one (arbitrarily small training error!) 

• AdaBoost minimizes the exponential loss 

• To be more robust against outliers, we can use 

LogitBoost 

• Face detection can be done with Boosting 

• Bagging reduces the overall committee error 

• Random Forests are an example of bagging 

with a very good performance 

Summary

16



Computer Vision Group  
Prof. Daniel Cremers

8. Sequential Data



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

• This incorporates the following Markov assumptions:

Bayes Filter (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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• This incorporates the following Markov assumptions:

Bayes Filter Without Actions

Removing the action variables we obtain:

(measurement)

(state)

Discrete 
Variables

Notation 
differs from 

Bishop!
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A Model for Sequential Data

• Observations in sequential data should not be 
modeled as independent variables such as: 

• Examples: weather forecast, speech, hand-
written text, etc. 

• The observation at time t depends on the 
observation(s) of (an) earlier time step(s):
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A Model for Sequential Data

•The joint distribution is therefore (d-sep): 

•However: often data depends on several earlier 
observations (not just one)
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A Model for Sequential Data

• Problem: number of stored parameters grows 
exponentially with the order of the Markov chain 

• Question: can we model dependency of all 
previous observations with a limited number of 
parameters?
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A Model for Sequential Data

Idea: Introduce hidden (unobserved) variables:
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A Model for Sequential Data

Idea: Introduce hidden (unobserved) variables: 

Now we have: 

But: 

And: number of parameters is nK(K-1) + const.
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Example

• Place recognition for mobile robots 

• 3 different states: corridor, room, doorway 

• Problem: misclassifications 

• Idea: use information from previous time step
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