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INTRODUCTION



Nonlinear Coordinate Transformation

http://cs.stanford.edu/people/karpathy/convnetjs/

Dimensionality may change!



TUT

Deep Neural Network: Sequence of Many Simple
Nonlinear Coordinate Transformations
that “disentangle” the data

L) Linear
separation
of red and

blue

classes

Data is sparse (almost lower-dimensional)
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The Increasing Complexity of Features

Input
features:
RGB

Layer 1
Feature space
coordinates:

45° edge yes/no
Green patch yes/no Feature space coordinates:

Person yes/no
Car wheel yes/no

Layer 3

[Zeiler & Fergus, ECCV 2014]



NEURAL NETWORKS



Fully-Connected Layer a.k.a. Dense Layer

is input feature vector for neural network (one sample).

is output vector of neural network with /. layers.
Layer number [ has:

* Inputs (usually , i.e. outputs of layer number )

«  Weight matrix , bias vector - both trained (e.g. with stochastic gradient descent)
such that for the training samples minimizes some objective (loss)

* Nonlinearity s, (fixed in advance, for example )

*  Output of layer

Transformation from to performed by layer [:
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2D Convolutional Layer

Appropriate for 2D structured data (e.g. images) where we want:
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Locality of feature extraction (far-away pixels do not influence local output)
Translation-equivariance (shifting input in space (i, ;] dimensions) yields same output shifted
in the same way)

the size of I/ along the i, j dimensions is called “filter size”

the size of I/ along the i dimension is the number of input channels (e.g. three (red, green,
blue) in first layer)

the size of I/ along the /& dimension is the number of filters (number of output channels)

Equivalent for 1D, 3D, ...



Handcrafted Convolutional Filters

Operation Filter Convolved
Image

0 0 0
Identity 010

0 1 0
Edge detection 1 -4 1
0 1 0
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https://en.wikipedia.org/wiki/Kernel_(image_processing)

The shown filters are
handcrafted

But filters that are learned by

convolutional networks are

optimal

* In terms of the training set and the
final loss

* In the context of all network layers

(weights of all layers optimized
jointly)
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Convolutional Network

papEsEe,
l:::".... . .

Interactive: http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Pooling
Layer 2

Convelution
Layer 2

Pooling
Layer 1

Convolution
Layer 1

Input Layer



http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Loss Functions

N-class classification:

* N outputs
* nonlinearity in last layer: softmax
» loss: categorical cross-entropy between outputs and targets ¢ (sum over all training samples)

2-class classification:

* 1 output
* nonlinearity in last layer: sigmoid
* loss: binary cross-entropy between outputs and targets ¢ (sum over all training samples)

2-class classification (alternative formulation)

« 2 outputs
* nonlinearity in last layer: softmax
* loss: categorical cross-entropy between outputs and targets ¢ (sum over all training samples)

Many regression tasks:
* linear output

* loss: mean squared error between outputs and targets ¢ (sum over all training samples)
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Neural Network Training Procedure

Fix number L of layers
Fix sizes of weight arrays and bias vectors
» For a fully-connected layer, this corresponds to the “number of neurons”
Fix nonlinearities
Initialize weights and biases with random numbers
Repeat:
Select mini-batch (i.e. small subset) of training samples

biases)

« Use chain rule (“error backpropagation”) to compute gradient for deeper layers
Perform a gradient-descent step (or similar) towards minimizing the error

« (Called “stochastic” gradient descent because every mini-batch is a random subset of

the entire training set)
“Early stopping”: Stop when loss on validation set starts increasing (to avoid overfitting)
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Compute the gradient of the loss with respect to all trainable parameters (all weights and
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GOOD PRACTICES



T
How to Avoid Overfitting

* hard constraints on model size (number of layers, number of weights) and connections
» weight constraints (e.g. convolutional networks: locality, translation-equivariance)

» pooling layers (downsampling of feature maps)

« additional loss terms

» random perturbations of training samples (noise, dropout, data augmentation)

« early stopping
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“Do’s and Don’ts” of Data Representation

« The data representation should be natural
(do not “outsource” known data transformations to the learning)

* Use meaningful features, especially complementary ones

« Data augmentation using natural assumptions
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WHAT DID THE NETWORK LEARN??



» Visualization: creative, no canonical way TI.ITI
* Look at standard networks to gain intuition

Viadimir
[} DrawNet

€ - C f [ peoplecsail.mitedu/torralba/research/drawCNN/drawNet.htm|?path=imagenetCNN

drawNet

imagenetCNN
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Each umit corresponds to one convehrienal umt. Clhick en one umt to show the strongest connections gomg m and out of the wnit. Fer selected wmits. each pannel shows the 4 mages (from ImageMet and Places) that most strongly activate each umt.
-
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TUTI

Image Reconstruction from Deep-Layer Features
Image CONV)S FC6 F FC38 .

[Mahendran & Vedaldi, CVPR 2015] RGN

[Dosovitskiy & Brox, CVPR 2016]

[Dosovitskiy & Brox, NIPS 2016]
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When Should Machine Learning Be Deep?

« Data distribution is complex

« Training data is abundant
* (or can be augmented to abundance)

* Optionally: Data is structured

* Neighborhood structure: convolutional networks (images, ...)
« Sequential structure: recurrent networks (memory, e.g. in time)
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THANK YOU!



