Machine Learning for Computer Vision Summer term 2017

2. Juni 2017
Topic: Regression, Kernels and Gaussian Processes

Exercise 1: Bayesian Update

Consider a linear regression model with basis functions $\phi(x)$ as presented in the lecture.
We assume a Gaussian prior distribution for the weights:

$$
p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid m_{0}, S_{0}\right)
$$

Suppose we have already observed N data points, so the posterior distribution is

$$
p(\mathbf{w} \mid \mathbf{t})=\mathcal{N}\left(\mathbf{w} \mid m_{N}, S_{N}\right)
$$

with

$$
m_{N}=S_{N}\left(S_{0}^{-1} m_{0}+\sigma^{-2} \Phi^{T} \mathbf{t}\right) \quad \text { and } \quad S_{N}^{-1}=S_{0}^{-1}+\sigma^{-2} \Phi^{T} \Phi
$$

Now, we observe a new data point $\left(x_{N+1}, t_{N+1}\right)$. What is the new posterior?
Using Bayes rule, we found out that having a Gaussian prior and a Gaussian likelihood gave us a Gaussian posterior which we can use as the prior for the next iteration (next sample that we observe). Now we want to compute $p\left(\mathbf{w} \mid \mathbf{t}, t_{N+1}, x_{N+1}\right)$ which reduces to $p\left(\mathbf{w} \mid t_{N+1}, x_{N+1}, m_{N}, S_{N}\right)$.

Our likelihood is

$$
p\left(t_{N+1} \mid x_{N+1}, \mathbf{w}\right)=\mathcal{N}\left(t_{N+1} \mid y(\mathbf{w}, \phi(x)), \sigma^{2}\right)
$$

Let $\phi_{N}=\phi\left(x_{N}\right)$ to simplify notation. Writing the likelihood explicitly we get

$$
p\left(t_{N+1} \mid x_{N+1}, \mathbf{w}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(t_{N+1}-\mathbf{w}^{T} \phi_{N+1}\right)^{2}}{2 \sigma^{2}}\right)
$$

Our posterior is

$$
p\left(\mathbf{w} \mid t_{N+1}, x_{N+1}, m_{N}, S_{N}\right)=\frac{p\left(t_{N+1} \mid x_{N+1}, \mathbf{w}\right) p(\mathbf{w} \mid \mathbf{t})}{p\left(t_{N+1} \mid x_{N+1}, \mathbf{t}\right)}
$$

We want the maximum likelihood of the posterior. The denominator is independent of \mathbf{w} so for we can ignore it.

$$
\begin{aligned}
p\left(\mathbf{w} \mid t_{N+1}, x_{N+1}, m_{N}, S_{N}\right) & \propto p(\mathbf{w} \mid \mathbf{t}) p\left(t_{N+1} \mid x_{N+1}, \mathbf{w}\right) \\
& \propto \exp \left(-\frac{1}{2}\left(\mathbf{w}-m_{N}\right)^{T} S_{N}^{-1}\left(\mathbf{w}-m_{N}\right)-\frac{\left(t_{N+1}-\mathbf{w}^{T} \phi_{N+1}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Maximizing the likelihood is equivalent to maximizing the log-likelihood and that is the same as minimizing the negative log-likelihood. Therefore we are left only with the arguments of the exponential, and we can omit the $-\frac{1}{2}$ factors.

$$
\begin{aligned}
& \left(\mathbf{w}-m_{N}\right)^{T} S_{N}^{-1}\left(\mathbf{w}-m_{N}\right)+\frac{\left(t_{N+1}-\mathbf{w}^{T} \phi_{N+1}\right)^{2}}{\sigma^{2}} \\
= & \mathbf{w}^{T} S_{N}^{-1} \mathbf{w}-2 \mathbf{w}^{T} S_{N}^{-1} m_{N}-2 \frac{\mathbf{w}^{T} \phi_{N+1} t_{N+1}}{\sigma^{2}}+\frac{\mathbf{w}^{T} \phi_{N+1} \phi_{N+1}^{T} \mathbf{w}}{\sigma^{2}}+\text { const. } \\
= & \mathbf{w}^{T}\left(S_{N}^{-1}+\frac{\phi_{N+1} \phi_{N+1}^{T}}{\sigma^{2}}\right) \mathbf{w}-2 \mathbf{w}^{T}\left(S_{N}^{-1} m_{N}+\frac{\phi_{N+1} t_{N+1}}{\sigma^{2}}\right)+\text { const. }
\end{aligned}
$$

where const. denotes remaining terms that are independent of w.
Comparing this expression with the maximum likelihood for the prior, we can see that our posterior is

$$
p\left(\mathbf{w} \mid t_{N+1}, x_{N+1}, m_{N}, S_{N}\right)=\mathcal{N}\left(w \mid m_{N+1}, S_{N+1}\right)
$$

with

$$
S_{N+1}^{-1}=S_{N}^{-1}+\frac{1}{\sigma^{2}} \phi_{N+1} \phi_{N+1}^{T} \quad \text { and } \quad m_{N+1}=S_{N+1}\left(S_{N}^{-1} m_{N}+\frac{\phi_{N+1} t_{N+1}}{\sigma^{2}}\right)
$$

Exercise 2: Constructing kernels

During this solution we assume the feature spaces of k_{1} and k_{2} to have finite dimensions. Thus they can be written as $k_{1}\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}\right)^{T} \phi_{1}\left(x_{2}\right), k_{2}\left(x_{1}, x_{2}\right)=\phi_{2}\left(x_{1}\right)^{T} \phi_{2}\left(x_{2}\right)$, where $\phi_{1}(x) \in \mathbb{R}^{n_{1}}, \phi_{2}(x) \in \mathbb{R}^{n_{2}}$. Note however that in general feature spaces can be infinite dimensional (e.g. $\phi(x) \in l^{2}(\mathbb{R})$, see 4.). We now have to define new kernels via a scalarproduct $k\left(x_{1}, x_{2}\right)=\left\langle\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right\rangle$
a) $k\left(x_{1}, x_{2}\right)=k_{1}\left(x_{1}, x_{2}\right)+k_{2}\left(x_{1}, x_{2}\right)$

To warm up:

$$
\phi(x)=\binom{\phi_{1}(x)}{\phi_{2}(x)} \in \mathbb{R}^{n_{1}+n_{2}}
$$

b) $k\left(x_{1}, x_{2}\right)=k_{1}\left(x_{1}, x_{2}\right) k_{2}\left(x_{1}, x_{2}\right)$

Note that the matrix-products do not commute, so it is a bit of work:

$$
\begin{aligned}
k\left(x_{1}, x_{2}\right) & =\phi_{1}\left(x_{1}\right)^{T} \phi_{1}\left(x_{2}\right) \phi_{2}\left(x_{1}\right)^{T} \phi_{2}\left(x_{2}\right) \\
& =\left(\sum_{i}\left(\phi_{1}\left(x_{1}\right)\right)_{i}\left(\phi_{1}\left(x_{2}\right)\right)_{i}\right)\left(\sum_{j}\left(\phi_{2}\left(x_{1}\right)\right)_{j}\left(\phi_{2}\left(x_{2}\right)\right)_{j}\right) \\
& =\underbrace{\sum_{i} \sum_{j}\left(\phi_{1}\left(x_{1}\right)\right)_{i}\left(\phi_{1}\left(x_{2}\right)\right)_{i}\left(\phi_{2}\left(x_{1}\right)\right)_{j}\left(\phi_{2}\left(x_{2}\right)\right)_{j}}_{\sum_{k}} \\
& =\underbrace{\sum_{i} \sum_{j}}_{\phi_{k}\left(x_{1}\right)} \underbrace{\left(\phi_{1}\left(x_{1}\right)\right)_{i}\left(\phi_{2}\left(x_{1}\right)\right)_{j}}_{\phi_{k}\left(x_{2}\right)} \underbrace{}_{\left(\begin{array}{c}
\left(\phi_{1}\left(x_{2}\right)\right)_{i}\left(\phi_{2}\left(x_{2}\right)\right)_{j} \\
\left(\phi_{1}(x)\right)_{1}\left(\phi_{2}(x)\right)_{1} \\
\vdots \\
\left(\phi_{1}(x)\right)_{n_{1}}\left(\phi_{2}(x)\right)_{n_{2}}
\end{array}\right)} \\
& \Rightarrow \phi(x)=\left(\begin{array}{c}
\left(\phi_{1}(x)\right)_{1}\left(\phi_{2}(x)\right)_{n_{2}} \\
\left(\phi_{1}(x)\right)_{2}\left(\phi_{2}(x)\right)_{1} \\
\vdots
\end{array}\right) \in \mathbb{R}^{n_{1} \cdot n_{2}}
\end{aligned}
$$

c) $k\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) k_{1}\left(x_{1}, x_{2}\right) f\left(x_{2}\right)$
$\phi(x)=f(x) \phi_{1}(x)$
d) $k(x, y)=\exp \left(k_{1}(x, y)\right)$

Again we write the scalarproduct as a sum:

$$
\begin{aligned}
\exp \left(\left(\phi_{1}(x)\right)^{T} \phi(y)\right) & =\exp \left(\sum\left(\phi_{1}(x)\right)_{i}\left(\phi_{1}(y)\right)_{i}\right) \\
& =\prod \exp \left(\left(\phi_{1}(x)\right)_{i}\left(\phi_{1}(y)\right)_{i}\right)
\end{aligned}
$$

Since we already know that the product of kernels is again a kernel it remains to show, that $\exp \left((\phi(x))_{i}(\phi(y))_{i}\right)$ is a kernel for a fixed index i. In the following we will omit i and imagine ϕ_{1} to be a scalar-valued function. From the Taylor-expansion of the exponential function, we know that

$$
\exp \left(\phi_{1}(x)\right)\left(\phi_{1}(y)\right)=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\phi_{1}(x)\right)^{k}\left(\phi_{1}(y)\right)^{k}
$$

This is an inner product in $l^{2}(\mathbb{R})$ with

$$
\phi(x)=\left(\begin{array}{c}
\phi_{1}(x) \\
\frac{1}{\sqrt{2}} \phi_{1}(x)^{2} \\
\frac{1}{\sqrt{6}} \phi_{1}(x)^{3} \\
\vdots \\
\frac{1}{\sqrt{k!}} \phi_{1}(x)^{k} \\
\vdots
\end{array}\right)
$$

e) $k\left(x_{1}, x_{2}\right)=x_{1}^{T} A x_{2}$

Since A is symmetric positive-definite, it admits a Cholesky decomposition $A=$ $L L^{T}$. Therefore, we have $x_{1}^{T} A x_{2}=x_{1}^{T} L L^{T} x_{2}=\left(L^{T} x_{1}\right)^{T}\left(L^{T} x_{2}\right)$. So $\phi(x)=L^{T} x$.

Exercise 3: Polynomial kernel

a) Show (by induction) that $k_{d}\left(x_{i}, x_{j}\right)=\left(x_{i}^{T} x_{j}\right)^{d}$ is a kernel for every $d \geq 1$.
$d=1: \phi(x)=x$. Induction step: Exercise 1 a$), 1 \mathrm{~b})$.
b) Find $\phi_{d}(x)$ such that $k_{d}\left(x_{i}, x_{j}\right)=\phi_{d}\left(x_{i}\right)^{T} \phi_{d}\left(x_{j}\right)$.

Consider first $d=2$:

$$
\begin{aligned}
\left(x_{i}^{T} x_{j}\right)^{2} & =\left(x_{i 1} x_{j 1}+x_{i 2} x_{j 2}\right)^{2} \\
& =x_{i 1}^{2} x_{j 1}^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}^{2} x_{j 2}^{2} \\
\phi(x) & =\left(\begin{array}{lll}
x_{1}^{2} & \sqrt{2} x_{1} x_{2} & x_{2}^{2}
\end{array}\right)^{T}
\end{aligned}
$$

For larger d the coefficients can be obtained by using the Binomial theorem/Pascal's triangle:

c) Find $\tilde{\phi}_{2}(x)$ for $\tilde{k}_{2}(x, y)=\left(x^{T} y+d\right)^{2}(d>0)$.

We can easily construct the kernel using the properties we proved in exercise 1.
a) $x^{T} y=\phi(x) \phi(y)$ is a valid kernel
b) $d=\sqrt{d} \sqrt{d}$ is a valid kernel
c) $x^{T} y+d \quad$ We proved that a sum of kernels is also a kernel
d) Finally, we proved that the product of two kernels is also a kernel

Exercise 4: Gaussian Processes Regression (Programming)

See code.

