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Exercise 1: Bayesian Update

Consider a linear regression model with basis functions φ(x) as presented in the lecture.
We assume a Gaussian prior distribution for the weights:

p(w) = N(w|m0, S0)

Suppose we have already observed N data points, so the posterior distribution is

p(w|t) = N(w|mN , SN)

with

mN = SN(S−10 m0 + σ−2ΦT t) and S−1N = S−10 + σ−2ΦTΦ.

Now, we observe a new data point (xN+1, tN+1). What is the new posterior?

Using Bayes rule, we found out that having a Gaussian prior and a Gaussian likelihood
gave us a Gaussian posterior which we can use as the prior for the next iteration (next
sample that we observe). Now we want to compute p(w|t, tN+1, xN+1) which reduces to
p(w|tN+1, xN+1,mN , SN).

Our likelihood is

p(tN+1|xN+1,w) = N(tN+1|y(w, φ(x)), σ2)

Let φN = φ(xN) to simplify notation. Writing the likelihood explicitly we get

p(tN+1|xN+1,w) =
1√

2πσ2
exp

(
−(tN+1 −wTφN+1)

2

2σ2

)
Our posterior is

p(w|tN+1, xN+1,mN , SN) =
p(tN+1|xN+1,w)p(w|t)

p(tN+1|xN+1, t)
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We want the maximum likelihood of the posterior. The denominator is independent
of w so for we can ignore it.

p(w|tN+1, xN+1,mN , SN) ∝ p(w|t)p(tN+1|xN+1,w)

∝ exp

(
−1

2
(w−mN)TS−1N (w−mN)− (tN+1 −wTφN+1)

2

2σ2

)
Maximizing the likelihood is equivalent to maximizing the log-likelihood and that is

the same as minimizing the negative log-likelihood. Therefore we are left only with the
arguments of the exponential, and we can omit the −1

2
factors.

(w−mN)TS−1N (w−mN) +
(tN+1 −wTφN+1)

2

σ2

=wTS−1N w− 2wTS−1N mN − 2
wTφN+1tN+1

σ2
+

wTφN+1φ
T
N+1w

σ2
+ const.

=wT (S−1N +
φN+1φ

T
N+1

σ2
)w− 2wT

(
S−1N mN +

φN+1tN+1

σ2

)
+ const.

where const. denotes remaining terms that are independent of w.

Comparing this expression with the maximum likelihood for the prior, we can see that
our posterior is

p(w|tN+1, xN+1,mN , SN) = N(w|mN+1, SN+1)

with

S−1N+1 = S−1N +
1

σ2
φN+1φ

T
N+1 and mN+1 = SN+1(S

−1
N mN +

φN+1tN+1

σ2
)

Exercise 2: Constructing kernels

During this solution we assume the feature spaces of k1 and k2 to have finite dimensions.
Thus they can be written as k1(x1, x2) = φ1(x1)

Tφ1(x2), k2(x1, x2) = φ2(x1)
Tφ2(x2),

where φ1(x) ∈ Rn1 , φ2(x) ∈ Rn2 . Note however that in general feature spaces can be
infinite dimensional (e.g. φ(x) ∈ l2(R), see 4.). We now have to define new kernels via a
scalarproduct k(x1, x2) = 〈φ(x1), φ(x2)〉

a) k(x1, x2) = k1(x1, x2) + k2(x1, x2)

To warm up:

φ(x) =

(
φ1(x)
φ2(x)

)
∈ Rn1+n2

b) k(x1, x2) = k1(x1, x2)k2(x1, x2)
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Note that the matrix-products do not commute, so it is a bit of work:

k(x1, x2) = φ1(x1)
Tφ1(x2)φ2(x1)

Tφ2(x2)

= (
∑
i

(φ1(x1))i(φ1(x2))i)(
∑
j

(φ2(x1))j(φ2(x2))j)

=
∑
i

∑
j

(φ1(x1))i(φ1(x2))i(φ2(x1))j(φ2(x2))j

=
∑
i

∑
j︸ ︷︷ ︸∑

k

(φ1(x1))i(φ2(x1))j︸ ︷︷ ︸
φk(x1)

(φ1(x2))i(φ2(x2))j︸ ︷︷ ︸
φk(x2)

⇒ φ(x) =



(φ1(x))1(φ2(x))1
...

(φ1(x))1(φ2(x))n2

(φ1(x))2(φ2(x))1
...

(φ1(x))n1(φ2(x))n2


∈ Rn1·n2

c) k(x1, x2) = f(x1)k1(x1, x2)f(x2)

φ(x) = f(x)φ1(x)

d) k(x, y) = exp(k1(x, y))

Again we write the scalarproduct as a sum:

exp((φ1(x))Tφ(y)) = exp(
∑

(φ1(x))i(φ1(y))i)

=
∏

exp((φ1(x))i(φ1(y))i)

Since we already know that the product of kernels is again a kernel it remains to
show, that exp((φ(x))i(φ(y))i) is a kernel for a fixed index i. In the following we will
omit i and imagine φ1 to be a scalar-valued function. From the Taylor-expansion of
the exponential function, we know that

exp(φ1(x))(φ1(y)) =
∞∑
k=0

1

k!
(φ1(x))k(φ1(y))k

This is an inner product in l2(R) with

φ(x) =



φ1(x)
1√
2
φ1(x)2

1√
6
φ1(x)3

...
1√
k!
φ1(x)k

...


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e) k(x1, x2) = xT1Ax2

Since A is symmetric positive-definite, it admits a Cholesky decomposition A =
LLT . Therefore, we have xT1Ax2 = xT1LL

Tx2 = (LTx1)
T (LTx2). So φ(x) = LTx.

Exercise 3: Polynomial kernel

a) Show (by induction) that kd(xi, xj) = (xTi xj)
d is a kernel for every d ≥ 1.

d = 1: φ(x) = x. Induction step: Exercise 1 a), 1b).

b) Find φd(x) such that kd(xi, xj) = φd(xi)
Tφd(xj).

Consider first d = 2:

(xTi xj)
2 = (xi1xj1 + xi2xj2)

2

= x2i1x
2
j1 + 2xi1xj1xi2xj2 + x2i2x

2
j2

φ(x) =
(
x21
√

2x1x2 x22
)T

For larger d the coefficients can be obtained by using the Binomial theorem/Pascal’s
triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

c) Find φ̃2(x) for k̃2(x, y) = (xTy + d)2 (d > 0).

We can easily construct the kernel using the properties we proved in exercise 1.

a) xTy = φ(x)φ(y) is a valid kernel

b) d =
√
d
√
d is a valid kernel

c) xTy + d We proved that a sum of kernels is also a kernel

d) Finally, we proved that the product of two kernels is also a kernel

Exercise 4: Gaussian Processes Regression (Programming)

See code.
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