
TU München
Fakultät für Informatik
PD Dr. Rudolph Triebel
John Chiotellis

Machine Learning for Computer Vision
Summer term 2017

June 17, 2017
Topic: Laplace Approximation, K-Means, EM

Exercise 1: Laplace Approximation
In Gaussian Process classification, we cannot integrate exactly over the parameters w.

a) The integral of the predictive distribution becomes analytically intractable because
the posterior distribution is no longer Gaussian. Therefore we don’t have a closed
form solution as in regression.
There are basically two approaches to tackle this problem. One is to approximate the
true posterior with sampling methods. The other is to use analytical approximations
which assume a Gaussian posterior. There are three common methods under this
approach:

• Laplace approximation

• Expectation Propagation

• Variational Inference

b) The goal is to find a Gaussian distribution q(z) with mean equal to a mode of p(z).
In other words, we first want to find a point z0 ∈ Rd for which the gradient of p(z)
is zero. For now we can ignore the normalizer and work with f(z).

The Laplace Approximation considers a second-order Taylor expansion of the loga-
rithm of f(z) centered at z0:

ln f(z) ≈ ln f(z0)− 1

2
(z − z0)TA(z − z0) (1)

where A = −∇∇ ln f(z0) is the Hessian matrix at z0.

The first-order term does not appear as z0 is a local maximum (∇f(z0) = 0).

If we take the exponential on both sides, we approximate f(z) as:

f(z) ≈ f(z0) exp{−1

2
(z − z0)TA(z − z0)} (2)

With this we can easily write q(z) as a normal distribution with mean z0 and
covariance A−1. The only thing left is to estimate the normalizer which we can
do by inspection. The Laplace approximation then is:

q(z) =
1

(2π)(d/2)|A|1/2
exp{−1

2
(z − z0)TA(z − z0)} (3)
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Exercise 2: Expectation-Maximization for GMM

In the standard EM algorithm, we first define the responsibilities γ as

γnk = p(znk = 1|xn) =
πkN(xn|µk,Σk)∑K
j=1 πjN(xn|µj,Σj)

, znk ∈ {0, 1},
K∑
k=1

znk = 1

a) Find the optimal means, covariances and mixing coefficients that maximize the data
likelihood. How can we interpret the results?

We want to maximize the data likelihood, so as usual we minimize the negative
log-likelihood:

−LL = − log p(X|µ,Σ,π) = − log
∏
n

∑
k

πkN(xn|µk,Σk) (4)

This time we minimize 3 times independently with respect to the means, the co-
variances and the mixture coefficients:

µ∗k = arg min
µk

−LL (5)

Σ∗k = arg min
Σk

−LL (6)

π∗k = arg min
πk

−LL (7)

In the following, to avoid confusion of sums and covariances, we denote covariance
Σk as Ck. To simplify some expressions, let us agree on the following notation:

Nnk ≡ N(xn|µk, Ck) (8)

Zk ≡ ((2π)d|Ck|)1/2 (9)

Dnk ≡ (xn − µk)TC−1
k (xn − µk) (10)

Therefore Nnk = Z−1
k exp{−1

2
Dnk} (11)

Thus, we have:

−LL = −
∑
n

log
∑
k

πkNnk

= −
∑
n

log
∑
k

πkZ
−1
k exp(−1

2
Dnk)

Solving for the means:
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∂LL

∂µk
=
∑
n

1∑
j πjNnj

∂
∑

k πkZ
−1
k exp(−1

2
Dnk)

∂µk
(12)

=
∑
n

1∑
j πjNnj

πkZ
−1
k

∂ exp(−1
2
Dnk)

∂µk
(13)

=
∑
n

1∑
j πjNnj

πkZ
−1
k exp(−1

2
Dnk)C

−1
k (xn − µk) (14)

=
∑
n

πkNnk∑
j πjNnj

C−1
k (xn − µk) (15)

=
∑
n

γnkC
−1
k (xn − µk) (16)

(17)

Setting −∂LL
∂µk

!
= 0 gives us:∑

n

γnkC
−1
k µk =

∑
n

γnkC
−1
k xn (18)

C−1
k µk

∑
n

γnk = C−1
k

∑
n

γnkxn (19)

C−1
k µk

∑
n

γnk = C−1
k

∑
n

γnkxn (20)

µk
∑
n

γnk =
∑
n

γnkxn (21)

µk =

∑
n γnkxn∑
n γnk

(22)
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Solving for the covariances:

∂LL

∂Ck
=
∑
n

1∑
j πjNnj

∂
∑

k πkZ
−1
k exp(−1

2
Dnk)

∂Ck
(23)

=
∑
n

1∑
j πjNnj

πk
∂Z−1

k exp(−1
2
Dnk)

∂Ck
(24)

=
∑
n

1∑
j πjNnj

πk

(
∂Z−1

k

∂Ck
exp(−1

2
Dnk) + Z−1

k

∂ exp(−1
2
Dnk)

∂Ck

)
(25)

=
∑
n

1∑
j πjNnj

πk

(
(−1

2
Z−1
k C−1

k ) exp(−1

2
Dnk) +

1

2
Z−1
k exp(−1

2
Dnk)C

−1
k (xn − µk)(xn − µk)TC−1

k

)
(26)

= (−1

2
)
∑
n

1∑
j πjNnj

πkZ
−1
k exp(−1

2
Dnk)

(
C−1
k − C

−1
k (xn − µk)(xn − µk)TC−1

k

)
(27)

= (−1

2
)
∑
n

γnk
(
C−1
k − C

−1
k (xn − µk)(xn − µk)TC−1

k

)
(28)

(29)

Here, we used the derivative of the determinant as follows:

∂Z−1
k

∂Ck
=
∂((2π)d|Ck|)−

1
2

∂Ck
= ((2π)d)−

1
2
∂(|Ck|)−

1
2

∂Ck
(30)

= ((2π)d)−
1
2 (−1

2
)|Ck|−

3
2
∂(|Ck|)
∂Ck

= ((2π)d)−
1
2 (−1

2
)|Ck|−

3
2 |Ck|(C−1

k )T (31)

= (−1

2
)((2π)d)−

1
2 |Ck|−

1
2C−1

k = −1

2
Z−1
k C−1

k (32)

and the derivative of the Mahalanobis distance as:

∂xTC−1x

∂C
= −C−TxxTC−T = −C−1xxTC−1 (33)

Setting −∂LL
∂Ck

!
= 0 gives us:∑

n

γnkC
−1
k =

∑
n

γnkC
−1
k (xn − µk)(xn − µk)TC−1

k (34)

C−1
k

∑
n

γnk = C−1
k

∑
n

γnk(xn − µk)(xn − µk)TC−1
k (35)∑

n

γnk =
∑
n

γnk(xn − µk)(xn − µk)TC−1
k (36)

Ck =

∑
n γnk(xn − µk)(xn − µk)T∑

n γnk
(37)
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Solving for the mixture coefficients: Here we must take into account that
∑

k πk = 1.
We enforce this constraint with a Lagrange multiplier. Our objective then becomes:

LL′ = LL + λ(
∑
k

πk − 1) (38)

where λ < 0.

Deriving w.r.t. πk, we get

∂LL′

∂πk
=
∑
n

1∑
j πjNnj

∂
∑

k πkNnk

∂πk
+ λ (39)

=
∑
n

1∑
j πjNnj

Nnk + λ (40)

=
∑
n

γnk
πk

+ λ (41)

Setting equal to zero and solving for λ, we get

λ = −
∑
n

γnk
πk

(42)

λπk = −
∑
n

γnk (43)∑
k

λπk = −
∑
k

∑
n

γnk (44)

λ = −N (45)

Now we can plug this back to the objective and actually solve for πk:

∂LL′

∂πk
=
∑
n

γnk
πk
−N !

= 0 (46)

1

πk

∑
n

γnk = N (47)

πk =

∑
n γnk
N

=
Nk

N
(48)

We can interpret these results as weighted averages of means and covariances, the
weights corresponding to the responsibilities γnk. The mixture coefficients πk are
simply the ratio of data points explained by each component.

Exercise 3: K-Means Compression and EM for GMM

See code.
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