Mathematical Formulation of Our Example

We define two binary random variables:
z and open, where z is “light on” or “light off”. Our
question is: What is p(open | 2)?

T —
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Combining Evidence

Suppose our robot obtains another observation z2,
where the index is the point in time.

Question: How can we integrate this new
information??

Formally, we want to estimate p(open | z1, 22).
Using Bayes formula with background knowledge:

p(opeﬂ ‘ Z1 s 22 .—@ | Ope@z)pen ‘ Zl)

p(z2 | 21)
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Markov Assumption

“If we know the state of the door attime ¢ =1
then the measurement z; does not give any further
information about z2.”

Formally: “zyand z9 are conditional independent
given open.” This means:

p(z2 | open, z1) = p(z2 | open)

This is called the
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Example with Numbers

Assume we have a second sensor:

p(zo | open) = 0.5  p(z9 | mopen) = 0.6

p(open | z1) = £ (from above)

Then: p(open | 21, 29) =
p(z2 | open)p(open | z1)
p(z2 | open)p(open | z1) + p(z2 | ~open)p(—open | 21)

32 5 _
= 25 =2 =0.625

L.2,43. 1
> 5153

“Zo lowers the probability that the door is open”
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General Form

Measurements: z1,...,2n

Markov assumption: z, and zq,...,2,_1 are
conditionally independent given the state x.

@| Zl‘,. .. 7Zn) _ p(Zn ‘ ZE‘)p(% | A ‘7Z’n—1)

p(zn ‘ Z2 PR Zn—l)
Recursion | . p(zn | )p(z | 21, ..., 2n—1)

\1_[ p(z; | x)p(x)
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Example: Sensing and Acting

Now the robot senses the door state and acts
(it opens or closes the door).

i
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State Transitions

The of an action is modeled as a
random variable U where U = u In our case

means “state after closing the door”.
State transition example:

0.9
0.1 ( open closed ]

0

If the door is open, the action “close door” succeeds
in 90% of all cases.
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The Outcome of Actions

For a given action © we want to know the
probability p(z | ). We do this by integrating over
all possible previous states z'.

If the state space is discrete:
p(x | u) = Zpai‘luw) ()

If the state space IS continuous:

p(z | u) = / p(z | u, ' )p(a')de’
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Back to the Example

D plopen | u,z")p(z’)

p(open | u)

u, open’ )p(open’) +

p(open | u, ~open’)p(—open’)
5 3

|
i
o
i®
®
-

15
p(—open | u) =1 — p(open | u) = = 0.9375
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Sensor Update and Action Update

So far, we learned two different ways to update the
system state:

. Sensor update: p(x | 2)
. Action update: p(z | u)
« Now we want to combine both:

Definition 2.1: Let D; = uq, 21, ..., us, 24 be a
sequence of sensor measurements and actions
until time ¢ Then the of the current state x;
Is defined as

Bel(x:) = p(x¢ | w1, 21, ..., us, 2¢)
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Graphical Representation
We can describe the overall process using a

This incorporates the following
Markov assumptions:

p(zt | ®o.t, U1, 21:¢) = p(2¢ | x¢) (measurement)

p(ﬂi’t | Lo:t—1, Ul:t, Z1:t—1) — p(l‘t | il?t—l,ut) (state)
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The Overall Bayes Filter

Bel(z:) = p(x: | w1, 21, ..., Ut, 2¢)

(BayeS) — 77 p(Zt ‘ Lty U1y 21y« ,Ut)p(ﬂjt ‘ U1, 214 - - ,Ut)
(Markov) =1 p(zt ‘ :Et)p(ajt ‘ ULy Ry - ,ut)
(Tot.prob) = 1 p(z | x¢) /p(:z:t | Up, 21, U, Tp—1)

.CBt_l ‘ U1, 21« - ,’U,t)d.fli't_l

Markov) =1 p(z¢ | T¢) /p Ty | Wi, Te—1)P(Te—1 | UL, 21,5+, U )dTp—1

Markov) = mn p(2z¢ | x¢) [ p(xe | U, xe—1)D(Te—1 | U1, 21, - 24—1)dTy—1

— 1 p <t | Lt /p Lt | Uty Lt — 1)B€1(33t 1)d517t 1
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The Bayes Filter Algorithm

Bel(x;) =1 p(z: | x¢) /p(:z:t | wg, 2 1)Bel(xy_1)dx, 1

Algorithm Bayes_filter (Bel(z), d)

1. ifd Is a sensor measurement z then

2 =0

3 for all x do

4 Bel'(x) + p(z | )Bel(x)

5. n < 1+ Bel'(z)

6 for all z do Bel'(z) « n~'Bel'(x)

/. elseif d is an action u then

8 for all x do Bel'(z) « [ p(x | u, 2")Bel(x’)dz’
9. return Bel'(z)
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Bayes Filter Variants

Bel(x:) = n p(z; | x¢) /p(azt g, 1) Bel(zy_1)dxi 1

The Bayes filter principle is used in
« Kalman filters

 Particle filters

« Hidden Markov models

« Dynamic Bayesian networks

 Partially Observable Markov Decision Processes
(POMDPs)
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Summary

o IS necessary to deal with
uncertain information, e.g. sensor measurements
 Using , we can do diagnhostic reasoning

based on causal knowledge
« The outcome of a robot's action can be described by a

« Probabilistic state estimation can be done recursively
using the using a sensor and a motion
update

A graphical representation for the state estimation
problem is the
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Categories of Learning (Rep.)

 Learning
 Supel m

N | Le arni ng

from a tralnlng
data set, on
the test data
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Mathematical Formulation (Rep.)

Suppose we are given a set X of objects and a set )
of object categories (classes). In the learning task we
search for a mapping ¢ : X — ) such that
elements in A are mapped to elementsin ).

Difference between regression and classification:

* |nregression, ) is continuous, in classification it is
discrete

e Regression learns a , classification usually
learns

For now we will treat regression
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Basis Functions

In principal, the elements of X can be anything (e.g. real
numbers, graphs, 3D objects). To be able to treat these
objects mathematically we need functions ¢ that map
from X to R™. We call these the

We can also interpret the basis functions as functions

that extract from the input data.
Features reflect the of the objects (width,
height, etc.).
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Simple Example: Linear Regression

e Assume: X =R, V=R, o =1 (identity)
. Given:  data points (z1,11), (z2,%2), . ..

* Goal: predict the value ¢ of a new example z
e Parametric formulation: f(z,w) = wo + w1
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Linear Regression

To determine the function f, we need an error function:

1 N
E(w) = 5> (f(ws,w) = t;)’
1—=1
We search for parameters W s.th. E(w™) is minimal:
N
1=1

flz,w) =wo +wiz =  Vf(z,w)=(@1 )
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Linear Regression
To evaluate the function y, we need an error function;

1 N
B(w) =5 3 (f(riw) — )’
1=1
We search for parameters w™ s.th. E(w™) is minimal:
N
1=1

flz,w) =wo +wiz =  Vf(z,w)=(@1 )

Using vector notation: x; = (1 z;)' = f(z;,w) = wlx;
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Linear Regression
To evaluate the function y, we need an error function;

|
E(w) = 5 Z(f(%w) —t;)°
We search for pazlr:almeters w” s.th. E(w™) is minimal:
VE(w) = i(f(%w) —t;)Vf(z;,w)=(0 0
flxz,w) = wO@j wir = Vf(r,w)=(1  x;)

Using vector notation: x; = (1 X,

||Mz
CD
O
|’
23
A
]
X
v
kel
|
7]
™
<3

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Polynomial Regression

Now we have: X =R, V=R, ¢,(x) = 2’
Given: data points (x1,%1), (z2,t2),..., (x@, tN)
Assume we are given M basis functions ®\

Model
Complexity

XL
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Polynomial Regression

We have defined:
T

¢(r) := (L, ¢1(), .., drpr—1(2))

Therefore: flz,w) =w! ¢(z)

B(w) = 3 S (W o) — t:)°

1=1

T Outer
x &

P1
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Polynomial Regression

We have defined:
T

¢(r) := (L, ¢1(), .., drpr—1(2))

Therefore: flz,w) =w! ¢(z)
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Polynomial Regression

We have defined:
T

¢(r) := (L, ¢1(), .., drpr—1(2))

Therefore: flz,w) =w! ¢(z)

B(w) = 3 S (W o) — t:)°

1=1
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Polynomial Regression

Thus, we have: g: d(x)o(x;)T = TP
bolz1)  61(1) bar1(a1)
do(r2)  P1(z2) drr—1(22)

do(zn) dr(zn) . dr(ew)
VE(w)=w'®&'d —t'd = o' dw = o't

It follows:
w =T ®) 1’ o
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Computing the Pseudoinverse

Mathematically, a pseudoinverse &+ exists for
every matrix @.

However: If @ is (close to) singular the direct
solution of ® is numerically unstable.

Therefore: Singular Value Decomposition (SVD) is
used: & = UDV?! where

®* matrices U and J are orthogonal matrices
® D is a diagonal matrix

Then: ® = vDTU!" where DT contains the
of all non-zero elements of D
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A Simple Example
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Varying the Sample Size
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Observations

« The higher the model complexity grows, the better
Is the fit to the data

o If the model complexity is too high, all data points
are explained well, but the resulting model oscillates
very much. It can not generalize well.
This is called

« By increasing the size of the data set (humber of
samples), we obtain a better fit of the model

« More complex models have larger parameters

Problem: How can we find a good model complexity
for a given data set with a fixed size?
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Regularization

We observed that complex models yield large
parameters, leading to oscillation. Idea:

Minimize the error function and the magnitude of the
parameters simultaneously

We do this by adding a regularization term :

5 1

B(w) = 5 Y (w () — 1) + 5wl

1=1
where A rules the influence of the regularization.
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Regularization

As above, we set the derivative to zero:

VE(w) =) (who(z;) — ti)d(z:)" + aw’ =07

1=1
widld A awl =t'® = (W4 d'd)w=2a"t

w=(\+d ®) o't

With regularization, we can find a complex model for a
small data set. However, the problem now is to find an

appropriate regularization coefficient A.
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Regularized Results
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The Problem from a Different View Point

Assume that y is affected by Gaussian noise :
t = f(x,w)+e€ where GWN(.;O,O'Q)
Thus, we have p(t | z,w, o) = N(¢t; f(z,w),o?)

o

Y

y(ﬂfl,W) o
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Maximum Likelihood Estimation

Aim: we want to find the w that maximizes p.

p(t | z,w,o)is the of the measured data
given a model. Intuitively:

Find parameters w that maximize the probabillity of
measuring the already measured data .

We can think of this as fitting a model w to the data .

Note: o is also part of the model and can be estimated.
For now, we assume o Is known.
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Maximum Likelihood Estimation

Given data points: (x1,%t1), (z2,t2),...,(xN,tN)
Assumption: points are drawn independently from p:

N
p(t|x,w.0) = []n(t:|xw.0)
1=1
N
= HN(tiQWT¢($Z)>(72)
1=1
where: Instead of maximizing p we
x = (21,29, ....2N) can also maximize |.ts
Co— (e ‘) (monotonicity of
A the logarithm)
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Maximum Likelihood Estimation

Inp(t | x,w,0)

Constant for all w s equal to FJ(w)
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Maximum Likelihood Estimation

|
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d

Inp(t | x,w,0)

|
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|
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Q
N
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<
~
<
|
8

wyr = argmaxInp(t | x,w,o) = argmin E(w) = (&1 &) 1"t
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