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2. Regression (cont.)
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Regression with MLE (Rep.)

Assume that y is affected by Gaussian noise : 

                                       where 

Thus, we have  

2

t = f(x,w) + ✏

p(t | x,w,�) = N (t; f(x,w),�2)
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize 

the data likelihood. Now, we assume a Gaussian prior: 

Using this, we can compute the posterior (Bayes):

“Maximum A-Posteriori Estimation (MAP)”

3

Likelihood Prior Posterior 

p(w | x, t) / p(t | w,x)p(w)
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize 

the data likelihood. Now, we assume a Gaussian prior: 

Using this, we can compute the posterior (Bayes): 

strictly: 

but the denominator is independent of w and we want 

to maximize p.

4

p(w | x, t,�1,�2) =
p(t | x,w,�1)p(w | �2)R
p(t | x,w,�1)p(w | �2)dw
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Maximum A-Posteriori Estimation

This is equal to the regularized error minimization. 

The MAP Estimate corresponds to a regularized 

error minimization where λ = (σ1 / σ2 )2  

   
5

2�2
1

2�2
1
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Summary: MAP Estimation

To summarize, we have the following optimization 
problem: 

The same in vector notation: 

6

J(w) =
1

2

NX

n=1

(wT�(xn)� tn)
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Summary: MAP Estimation

To summarize, we have the following optimization 
problem: 

The same in vector notation: 

And the solution is  

7

J(w) =
1

2

NX

n=1

(wT�(xn)� tn)
2 +

�

2
w

T
w �(xn) 2 RM

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw t 2 RN

w⇤ = (�IM + �T�)�1�T t

Identity matrix 

of size M by M
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MLE And MAP

• The benefit of MAP over MLE is that prediction is 
less sensitive to overfitting, i.e. even if there is 
only little data the model predicts well. 

• This is achieved by using prior information, i.e. 
model assumptions that are not based on any 
observations (= data) 

• But: both methods only give the most likely 
model, there is no notion of uncertainty yet 

Idea 1: Find a distribution over model parameters 
(“parameter posterior”) 

8
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MLE And MAP

• The benefit of MAP over MLE is that prediction is 
less sensitive to overfitting, i.e. even if there is 
only little data the model predicts well. 

• This is achieved by using prior information, i.e. 
model assumptions that are not based on any 
observations (= data) 

• But: both methods only give the most likely 
model, there is no notion of uncertainty yet 

Idea 1: Find a distribution over model parameters 

Idea 2: Use that distribution to estimate prediction 
uncertainty (“predictive distribution”)

9
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When Bayes Meets Gauß

Theorem: If we are given this: 

                  I. 

                  II. 

Then it follows (properties of Gaussians): 

     III. 

     IV. 

where

10

p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax+ b,⌃2)

p(y) = N (y | Aµ+ b,⌃2 +A⌃1A
T )

p(x | y) = N (x | ⌃(AT⌃�1
2 (y � b) + ⌃�1

1 µ),⌃)

⌃ = (⌃�1
1 +AT⌃�1

2 A)�1

”Linear Gaussian Model”

linear 

dependency  
on x

See Bishop’s book 
for the proof!
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When Bayes Meets Gauß

Thus: When using the Bayesian approach, we 
can do even more than MLE and MAP by using 
these formulae. 

This means: 

                   

If the prior and the likelihood are Gaussian then the 
posterior and the normalizer are also Gaussian and 
we can compute them in closed form. 

This gives us a natural way to compute uncertainty!

11
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The Posterior Distribution

Remember Bayes Rule: 

With our theorem, we can compute the posterior 
in closed form (and not just its maximum)! 

The posterior is also a Gaussian and its mean is 
the MAP solution.

12

Likelihood Prior Posterior 

p(w | x, t) / p(t | w,x)p(w)
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The Posterior Distribution

We have  

and 

From this and IV. we get the posterior covariance: 

and the mean: 

So the entire posterior distribution is  

13

p(t | w,x) = N (t;�w,�2
1IM )

p(w) = N (w;0,�2
2IM )

⌃ = (��2
2 IM + ��2

1 �T�)�1

= �2
1(
�2
1

�2
2

IM + �T�)�1

p(w | t,x) = N (w;µ,⌃)

µ = ��2
1 ⌃�T t

N
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The Predictive Distribution

We obtain the predictive distribution by integrating 
over all possible model parameters: 

This distribution can be computed in closed form, 
because both terms on the RHS are Gaussian. 

From above we have 

   where 

  and 

Parameter posterior New data likelihood 

14

p(w | t,x) = N (w;µ,⌃)

µ = ��2
1 ⌃�T t

= �2
1(
�2
1

�2
2

IM + �T�)�1⌃



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The Predictive Distribution

We obtain the predictive distribution by integrating 
over all possible model parameters: 

This distribution can be computed in closed form, 
because both terms on the RHS are Gaussian. 

From above we have 

   where 

  and 

Parameter posterior New data likelihood 

15

p(w | t,x) = N (w;µ,⌃)

µ = ��2
1 ⌃�T t

= �2
1(
�2
1

�2
2

IM + �T�)�1⌃
w⇤ = (�IM + �T�)�1�T t       ) µ

MAP solution
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The Predictive Distribution

Using formula III. from above (linear Gaussian),  

                                          

                   where 

16

=

Z
N (t;�(x)Tw,�)N (w;µ,⌃)dw

= N (t;�(x)Tµ,�2
N (x))

�

2
N (x) = �

2 + �(x)T⌃�(x)
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The Predictive Distribution (2)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 1 data point

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

17
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Predictive Distribution (3)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 2 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

18
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Predictive Distribution (4)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 4 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

19
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Predictive Distribution (5)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 25 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

20
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Summary

• Regression can be expressed as a least-squares 
problem 

• To avoid overfitting, we need to introduce a 

regularisation term with an additional parameter λ 
• Regression without regularisation is equivalent to 

Maximum Likelihood Estimation 

• Regression with regularisation is Maximum A-Posteriori 

• When using Gaussian priors (and Gaussian noise), all 
computations can be done analytically 

• This gives a closed form of the parameter posterior and 
the predictive distribution

21
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Motivation

• Usually learning algorithms assume that some 
kind of feature function is given 

• Reasoning is then done on a feature vector of a 
given (finite) length 

• But: some objects are hard to represent with a 
fixed-size feature vector, e.g. text documents, 
molecular structures, evolutionary trees 

• Idea: use a way of measuring similarity without 
the need of features, e.g. the edit distance for 
strings 

• This we will call a kernel function

23
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

                                               

24

J(w) =
1

2

NX

n=1

(wT�(xn)� tn)
2 +

�

2
w

T
w �(xn) 2 RM
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

if we write this in vector form, we get 

25

J(w) =
1

2

NX
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(wT�(xn)� tn)
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

if we write this in vector form, we get 

and the solution is 

26

J(w) =
1

2

NX

n=1

(wT�(xn)� tn)
2 +

�

2
w

T
w

J(w) =
1

2
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Dual Representation

Many problems can be expressed using a dual 
formulation, including linear regression. 

However, we can express this result in a different 
way using the matrix inversion lemma: 

27

(A+BCD)�1 = A�1 �A�1B(C�1 +DA�1B)�1DA�1

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw

w = (�T�+ �IM )�1�T t
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

However, we can express this result in a different 
way using the matrix inversion lemma: 

28

(A+BCD)�1 = A�1 �A�1B(C�1 +DA�1B)�1DA�1

w = �T (��T + �IN )�1t

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw

w = (�T�+ �IM )�1�T t
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

29

w = �T (��T + �IN )�1t
=: a “Dual Variables”

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw

w = (�T�+ �IM )�1�T t
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

Plugging               into          gives:

30

w = �T (��T + �IN )�1t
=: a

J(a) =
1

2
aT��T��Ta� aT��T t+ tT t+

�

2
aT��Ta

J(w)w = �Ta

“Dual Variables”

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw

=: K

w = (�T�+ �IM )�1�T t
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This is called the dual formulation. 

Note:  

31

a 2 RN

K = ��T

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This is called the dual formulation. 

The solution to the dual problem is: 

32

J(w) =
1
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This we can use to make predictions: 

(now x* is unknown and a is given from training)

33

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw

f(x⇤) = w

T�(x⇤) = a

T��(x⇤) = k(x⇤)T (K + �IN )�1
t
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Dual Representation

where:  

Thus, f is expressed only in terms of dot products 
between different pairs of        , or in terms of the 
kernel function  

34

�(x)

K =

0

B@
�(x1)T�(x1) . . . �(x1)T�(xN )

...
. . .

...
�(xN )T�(x1) . . . �(xN )T�(xN )

1

CA

k(xi,xj) = �(xi)
T�(xj)

f(x⇤) = k(x⇤)T (K + �IN )�1
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Representation using the Kernel

Now we have to invert a matrix of size            , 

before it was             where            , but: 

By expressing everything with the kernel 
function, we can deal with very high-dimensional 
or even infinite-dimensional feature spaces! 

Idea: Don’t use features at all but simply define a 
similarity function expressed as the kernel!

35

N ⇥N

M ⇥M M < N

f(x⇤) = k(x⇤)T (K + �IN )�1
t
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Constructing Kernels

The straightforward way to define a kernel function is to 
first find a basis function        and to define: 

This means, k is an inner product in some space    , i.e: 

1.Symmetry: 

2.Linearity: 

3.Positive definite:                       , equal if  

Can we find conditions for k under which there is a 
(possibly infinite dimensional) basis function into    , 

where k is an inner product? 

36

k(xi,xj) = �(xi)
T�(xj)

�(x)

H
k(xi,xj) = h�(xj),�(xi)i = h�(xi),�(xj)i

ha(�(xi) + z),�(xj)i = ah�(xi),�(xj)i+ ahz,�(xj)i
h�(xi),�(xi)i � 0 �(xi) = 0

H
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Constructing Kernels

Theorem (Mercer): If k is  

1.symmetric, i.e.                                 and 

2.positive definite, i.e.  
 
 
 
 
is positive definite, then there exists a mapping       

into a feature space     so that k can be expressed 
as an inner product in    . 

This means, we don’t need to find         explicitly! 

We can directly work with k 
37

k(xi,xj) = k(xj ,xi)

K =

0

B@
k(x1,x1) . . . k(x1,xN )

...
. . .

...
k(xN ,x1) . . . k(xN ,xN )

1

CA

�(x)

H
H

“Gram Matrix”

�(x)

“Kernel Trick”
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Constructing Kernels

Finding valid kernels from scratch is hard, but: 

A number of rules exist to create a new valid kernel k 
from given kernels k1 and k2. For example:

38

where A is positive semidefinite 
and symmetric
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Examples of Valid Kernels

• Polynomial Kernel: 

• Gaussian Kernel:  

• Kernel for sets: 

• Matern kernel:

39

k(xi,xj) = (xT
i xj + c)d c > 0 d 2 N

k(xi,xj) = exp(�kxi � xjk2/2�2
)

k(A1, A2) = 2|A1\A2|

k(r) =
21�⌫

�(⌫)

 p
2⌫r

l

!⌫

K⌫

 p
2⌫r

l

!
r = kxi � xjk, ⌫ > 0, l > 0
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A Simple Example

Define a kernel function as 

This can be written as: 

It can be shown that this holds in general for  

40
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Visualization of the Example

Original decision 
boundary is an ellipse

Decision boundary 
becomes a hyperplane

41
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Application Examples

Kernel Methods can be applied for many different 
problems, e.g.: 

• Density estimation (unsupervised learning) 

• Regression 

• Principal Component Analysis (PCA) 

• Classification 

Most important Kernel Methods are 

• Support Vector Machines 

• Gaussian Processes

42
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Kernelization

• Many existing algorithms can be converted into 
kernel methods 

• This process is called “kernelization” 

Idea: 

• express similarities of data points in terms of an 
inner product (dot product) 

• replace all occurrences of that inner product by 
the kernel function 

This is called the kernel trick 

43



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance

44

kxi � xjk2 = x

T
i xi + x

T
j xj � 2xT

i xj
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance 

• We can now replace the dot products by a valid 
Mercer kernel and we obtain: 

• This is a kernelized nearest-neighbor classifier 

• We do not explicitly compute feature vectors!

45

kxi � xjk2 = x

T
i xi + x

T
j xj � 2xT

i xj

d(xi,xj)
2 = k(xi,xi) + k(xj ,xj)� 2k(xi,xj)
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Back to Linear Regression (Rep.)

We had the primal and the dual formulation: 

with the dual solution: 

This we can use to make predictions (MAP): 

46

J(w) =
1

2
wT�T�w �w�T t+

1
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tT t+
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f(x⇤) = w
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Observations

•We have found a way to predict function values 

of y for new input points x* 

•As we used regularized regression, we can 
equivalently find the predictive distribution by 

marginalizing out the parameters w 
Questions: 

•Can we find a closed form for that distribution? 

•How can we model the uncertainty of our 
prediction? 

•Can we use that for classification?

47
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Gaussian Marginals and Conditionals

First, we need some formulae: 

Assume we have two variables     and     that are 
jointly Gaussian distributed, i.e.  

with  

Then the cond. distribution 
where                                            

and  

The marginal is

48

xa xb

N (x | µ,⌃)

x =

✓
xa

xb

◆
µ =

✓
µa

µb

◆
⌃ =

✓
⌃aa ⌃ab

⌃ba ⌃bb

◆

p(xa) = N (xa | µa,⌃aa)

p(xa | xb) = N (x | µa|b,⌃a|b)

⌃a|b = ⌃aa � ⌃ab⌃
�1
bb ⌃ba

µa|b = µa + ⌃ab⌃
�1
bb (xb � µb)

“Schur Complement”
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Gaussian Marginals and Conditionals

Main idea of the proof for the conditional (using 
inverse of block matrices): 

The lower line corresponds to a quadratic form 
that is only dependent on         , i.e. the rest can 
be identified with the conditional Normal 
distribution               .   

(for details see, e.g. Bishop or Murphy)

49

✓
⌃aa ⌃ab

⌃ba ⌃bb

◆�1

=

✓
I 0

�⌃�1
bb ⌃ba I

◆✓
(⌃/⌃bb)�1 0

0 ⌃�1
bb

◆✓
I �⌃ab⌃

�1
bb

0 I

◆

p(xb)

p(xa | xb)
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Definition

Definition: A Gaussian process is a collection of 
random variables, any finite number of which have 
a joint Gaussian distribution. 

The number of random variables can be infinite! 

This means: a GP is a Gaussian distribution over 
functions! 

To specify a GP we need: 

mean function:   

covariance function: 

50

m(x) = E[y(x)]

k(x1,x2) = E[y(x1)�m(x1)y(x2)�m(x2)]
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Example

•green line: sinusoidal data source 

•blue circles: data points with Gaussian noise 

•red line: mean function of the Gaussian 
process 

51
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How Can We Handle Infinity?

Idea: split the (infinite) number of random 
variables into a finite and an infinite subset.  

From the marginalization property we get: 

This means we can use finite vectors.

52

x =

✓
xf

xi

◆
⇠ N

✓✓
µf

µi

◆
,

✓
⌃f ⌃fi

⌃T
fi ⌃i

◆◆
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p(xf ) =

Z
p(xf ,xi)dxi = N (xf | µf ,⌃f )
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A Simple Example

In Bayesian linear regression, we had 
with prior probability                     . This means: 

Any number of function values 
is jointly Gaussian with zero mean.  

The covariance function of this process is  

In general, any valid kernel function can be used.

53

y(x) = �(x)Tw

w ⇠ N (0,⌃p)

E[y(x)] = �(x)TE[w] = 0

E[y(x1)y(x2))] = �(x1)
TE[ww

T ]�(x2) = �(x1)
T⌃p�(x2)

y(x1), . . . , y(xN )

k(x1,x2) = �(x1)
T⌃p�(x2)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The Covariance Function

The most used covariance function (kernel) is: 

It is known as “squared exponential”, “radial basis 
function” or “Gaussian kernel”. 

Other possibilities exist, e.g. the exponential 
kernel: 

This is used in the “Ornstein-Uhlenbeck” process.

54

signal variance

k(xp,xq) = �2
f exp(�

1

2l2
(xp � xq)

2
) + �2

n�pq

length scale noise variance

k(xp,xq) = exp(�✓|xp � xq|)
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Sampling from a GP

Just as we can sample from a Gaussian 
distribution, we can also generate samples from 
a GP. Every sample will then be a function! 

Process: 

1.Choose a number of input points 

2.Compute the covariance matrix K where 

3.Generate a random Gaussian vector from  

4.Plot the values                  versus
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x

⇤
1, . . . ,x

⇤
M

Kij = k(x⇤
i ,x

⇤
j )

y⇤ ⇠ N (0,K)

x

⇤
1, . . . ,x

⇤
M y⇤1 , . . . , y

⇤
M
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Sampling from a GP

Squared exponential kernel
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Exponential kernel


