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2. Regression (cont.)



Regression with MLE (Rep.)

Assume that y is affected by Gaussian noise :
t = f(x,w)+e€ where ew/\/'(.;(),az)
Thus, we have p(t | z,w, o) = N(¢t; f(z,w),o?)

o

Y

y(xlvw) o
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize

the data likelihood. Now, we assume a Gaussian
p(w | o) = N(w;0,051)

Using this, we can compute the (Bayes):

Posterior Likelihood Prior
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize
the data likelihood. Now, we assume a Gaussian

p(w | o) = N(w;0,051)
Using this, we can compute the (Bayes):

p(W ‘ $7t70-170-2) X p(t ‘ ZU,W,O'l)p(W I 02)

strictly: tlz,w,o1)p(w | o
y p(W ‘ QU,t,O-l,O'Q) - p( ‘ 1)p( ‘ 2)

~ [p(t]z,w,o)p(w | o9)dw

but the denominator is independent of w and we want
to maximize p.
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Maximum A-Posteriori Estimation

lnp(W ‘ $7t70-170-2) X 1I1p(t | $7W70-1) + lnp(W | 02)

1
const. — —; Z(qub(:z:) — ;)7 const. 5 wlw
201 “— 20'2

x == (Z(Wbe(QJ) —t;)° A ZEWTW)

2
201 \i=1 2

This is equal to the regularized error minimization.
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Summary: MAP Estimation

To summarize, we have the following optimization

problem: o .
J(w) = 5 Z(WT(/b(Xn) — tn)2 + §WTW ¢(Xn) - RY
The same In vector notation:
J(w) = %WT(I)T(I)W —wdlt + %tTt + %WTW t ¢ RY
do(x1) ¢1(z1) ... dm—1(71)
- ¢0(.$2) ¢1(.332) B ¢M—.1(562) - RNXM
do(xn) o1(zn) .. Sm—1(anN) ;ei't”re
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Summary: MAP Estimation

To summarize, we have the following optimization
problem:

1 al T 2 )‘ T M
n—=1
The same In vector notation:

1 1 A
J(w) = §WT(I)T(I)W —wdlt + §tTt + §WTW t ¢ RY

And the solution Is

v = gy o7 0) e

|dentity matrix
of size M by M
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MLE And MAP

* The benefit of MAP over MLE is that prediction is
less sensitive to overfitting, i.e. even if there is
only little data the model predicts well.

* This is achieved by using prior information, i.e.
model assumptions that are not based on any
observations (= data)

e But: both methods only give the most likely
model, there is no notion of uncertainty yet

ldea 1: Find a distribution over model parameters
(“parameter posterior’)
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MLE And MAP

* The benefit of MAP over MLE is that prediction is
less sensitive to overfitting, i.e. even if there is
only little data the model predicts well.

* This is achieved by using prior information, i.e.
model assumptions that are not based on any
observations (= data)

e But: both methods only give the most likely
model, there is no notion of uncertainty yet

ldea 1: Find a distribution over model parameters

|ldea 2: Use that distribution to estimate prediction
uncertainty (“predictive distribution™)
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When Bayes Meets Gauf3

Theorem: |f we are given this;
. p(x) =N (x| p, % inear

dependency

I ply | %) = y\zg

Then it follows (properties of Gaussians):

. p(y) =N(y | Ap+b, 3 + AL AT)
V. pix|y)=N(x|ZA'S (y —b)+2;7 ), %)

where . S .
Z — (Zl_ _|_A 22_ A)_ See Bishop’s book

for the proof!
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When Bayes Meets Gauf3

Thus: When using the Bayesian approach, we
can do even more than MLE and MAP by using

these formulae.

This means:

If the prior and the likelihood are Gaussian then the
posterior and the normalizer are also Gaussian and
we can compute them in closed form.

This gives us a natural way to compute uncertainty!
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The Posterior Distribution

Remember Bayes Rule:

A 1D~ DD

Posterior Likelihood

With our theorem, we can compute the posterior
in closed form (and not just its maximum)!

The posterior is also a Gaussian and its mean is
the MAP solution.
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The Posterior Distribution

We have  p(w) =N (w;0,051)

and ;¢ | w,x) = N(t; dw, 021y )

From this and |IV. we get the posterior covariance:

Y= (03 Iy + o720 ®)7!

and the mean: p = o220t
So the entire posterior distribution is
p(w | t,x) = N(w; p, 2)
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The Predictive Distribution

We obtain the predictive distribution by integrating
over all possible model parameters:

plt | z,6,%) = / Bt 2. whn(w | . thdw

New data likelihood Parameter posterior

This distribution can be computed in closed form,
because both terms on the RHS are Gaussian.

From above we have| p(w | t,x) = N (w; u, X)
where u = o; QZCDTt
and 5 _ 2%, 4 97 e)
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The Predictive Distribution

We obtain the predictive distribution by integrating
over all possible model parameters:

p(t | z,t,%) = / p(t | 2, w)p(w | , t)dw

New data likelihood Parameter posterior

This distribution can be computed in closed form,
because both terms on the RHS are Gaussian.

From above we have | p(w | t,x) = NV (w; u, )
where u = o; QZCDTt
and 5 _ 2%, 4 97 e)

= =\ +d'd) el

04 MAP solution
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The Predictive Distribution

Using formula lll. from above (linear Gaussian),

p(t | z,t,%) = / p(t | 2, w)p(w | , t)dw

B /N(t; d(x)" w,o) N (w; p, X)dw

= N(t;¢(x)" p, 0% (x))

where
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The Predictive Distribution (2)

. Example: Sinusoidal data, 9 Gaussian basis
functions, 1 data point

1  '- 1-' \ 4D

0 1 0 |

The predictive distribution Some samples from
From: C.M. Bishop the posterior
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Predictive Distribution (3)

. Example: Sinusoidal data, 9 Gaussian basis
functions, 2 data points

1 1
t t
0 0
—1 —1
e) i i
The predictive distribution Some samples from
From: C.M. Bishop the posterior
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Predictive Distribution (4)

. Example: Sinusoidal data, 9 Gaussian basis
functions, 4 data points

1 |

t t
7

Or 0

-1 -1
; 1 —
The predictive distribution Some samples from

From: C.M. Bishop the posterior

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Predictive Distribution (5)

- Example: Sinusoidal data, 9 Gaussian basis
functions, 25 data points

0 1 0 |

The predictive distribution Some samples from
From: C.M. Bishop the posterior
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Summary
« Regression can be expressed as a least-squares
problem

« To avoid overfitting, we need to introduce a
regularisation term with an additional parameter A

« Regression without regularisation is equivalent to
Maximum Likelihood Estimation

« Regression with regularisation is Maximum A-Posteriori

« When using Gaussian priors (and Gaussian noise), all
computations can be done analytically

 This gives a closed form of the parameter posterior and
the predictive distribution
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3. Kernel Methods



Motivation

e Usually learning algorithms assume that some
kind of feature function is given

® Reasoning is then done on a feature vector of a
given (finite) length

e But: some objects are hard to represent with a
fixed-size feature vector, e.g. text documents,
molecular structures, evolutionary trees

* |dea: use a way of measuring similarity without
the need of features, e.g. the edit distance for
strings

e This we will call a kernel function
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

J(W) — % Z(WT¢(Xn) — tn)z =+ %WTW ¢(Xn) - RM

n=1
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):
1 N

J(W) — 5 Z(WT¢(Xn) — tn)Q =+ %WTW ¢(Xn) -~ RM

n=1

it we write this in vector form, we get

1 1
J(w) = §WT(I)T(I)W —wdlt + §tTt + %WTW t c RY

(I)GRNXM
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 N

J(W) — 5 Z(WT¢(Xn) — tn)Q =+ %WTW ¢(Xn) -~ RM

n=1

it we write this in vector form, we get

1 1
J(w) = §WT(I)T(I)W —wdlt + §tTt + %WTW t c RY

 c RV
and the solution Is

w = (®'® 4+ \;) 1Dt
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Dual Representation

Many problems can be expressed using a dual
formulation, including linear regression.

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt + §WTW

w=(®'® + \Ipy) "t

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) '=A"1'—A"'B(C"'+DA'B)"'DA™!
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt + §WTW

w=(®'® + \Ipy) "t

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) '=A"1'—A"'B(C"'+DA'B)"'DA™!

w = &' (®D! + \IN) Mt
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Dual Representation
Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt + §WTW

w=(®'® + \Ipy) "t

w =& (0" + \y) 't

- .~ :
—:'a “Dual Variables”
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt — §WTW

w= ("D + N\ Pt

w =& (0" + \y) 't

- .~ :
—:'a “Dual Variables”

Plugging w = ®7a Into J(w) gives:

1 A
J(a) = §aTchchprTa —al®d t +tit + §aT<I><I>Ta

—: K
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt + §WTW

1 1 A
J(a) = 5aTKKa —a' Kt + 5tTt + §aTKa K =o'
This Is called the dual formulation.

Note: acRY wecRM
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Dual Representation
Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt — §WTW

1 1 A
J(a) = §aTKKa —al Kt + §tTt -+ §aTKa

This is called the dual formulation.
The solution to the dual problem is:

a=(K+My) 't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt + §WTW

1 1 A
J(a) = §aTKKa —al Kt + §tTt -+ §aTKa

a=(K+My) 't

This we can use to make predictions:

f(x*) = wlo(x*) = al ®g(x*) = k(x*)T (K + AMy) 't
(now x* is unknown and a is given from training)
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Dual Representation
f(x*) = k(x*)" (K + AN) ™'t

where:

¢(X1)T¢(X*) d(x)) T p(x1) ... o(x1)to(xn)
k(x") = E K = E E
d(xn)" d(x*) dxn) p(x1) ... d(xn)! B(xN)

Thus, fis expressed only in terms of dot products
between different pairs of ¢(x), or in terms of the
kernel function

k(xi,x7) = ¢(xi)" ¢(x;)
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Representation using the Kernel

F(x*) = k(x*)T (K + My) "'t

Now we have to invert a matrix of size N x N,
before it was M x M where M < N, but:

By expressing everything with the kernel
function, we can deal with very high-dimensional
or even infinite-dimensional feature spaces!

Idea: Don’t use features at all but simply define a
similarity function expressed as the kernel!
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Constructing Kernels

The straightforward way to define a kernel function is to
first find a basis function ¢(x) and to define:

k(xi,x5) = o(x)" o(x;)
This means, k£ Is an inner product in some space H, I.€e:
1.Symmetry: k(x;,x;) = ((x5), 9(x:)) = (@(xi), d(x5))
2.Linearity: {(a(¢(x:) +2), d(x;)) = a(P(x:), 9(x;)) + a{z, H(x;))
3.Positive definite: (¢(x:), ¢(x;)) > 0, equal if ¢(x;) =0

Can we find conditions for &£ under which there is a
(possibly infinite dimensional) basis function into #,

where £ is an inner product?
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Constructing Kernels

Theorem (Mercer): If k is
1.symmetric, i.e. k(x;,x;) = k(x;,%;) and
2.positive definite, I.e.
k(x1,x1) ... k(x1,xn)
K =

k(xy,x1) ... k(Xn,XnN)

IS positive definite, then there exists a mapping ¢(x)

into a feature space H so that £ can be expressed
as an inner product in H.

This means, we don’t need to find ¢(x) explicitly!
We can directly work with %
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Constructing Kernels
Finding valid kernels from scratch is hard, but:

A number of rules exist to create a new valid kernel &
from given kernels £, and k,. For example:

k(x1,X2) = ck1(X1,X2), ¢>0

k(x1,X2) = f(x1)k1(x1,%2) f(x2)
k(x1,x2) = exp (k1(x1,X2))

k(x1,X2) = k1(X1,X2) + kao(x1,X2)
k(x1,X2) = k1(X1,X2)ka(x1,X2)

k(xl, X2) _ X{ Axo where A is positive semidefinite

and symmetric
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Examples of Valid Kernels

* Polynomial Kernel:
k(xi,x;)=(x;x;+¢c)* ¢>0 deN
e Gaussian Kernel;

k(xi,x;) = exp(—||x; — x;/|%/207)
e Kernel for sets:

k(Ay, Ap) = 21410421
e Matern kernel:

ol—v (m)K (m
B [ g [

) ’I“ZHX@'—X]'H,V>O,Z>O
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A Simple Example

Define a kernel function as
k(x,x') = (x'x)? x,x’ € R
This can be written as:

(z12) + xoxh)* = 2727 4 2212 202h, + 252,
($175’327 \/_$1$2)(5‘71 , T 7\/_$1$2)T
= ¢(x)" ¢(x)
It can be shown that this holds in general for

k(xi,x5) = (x; x5)°
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Visualization of the Example

d(x) = (27,25, V2x122) Decision boundary
becomes a hyperplane

0' t‘
o
*, - .
‘e Q .
0 Q Y
o, o ,
0 o
. K .
. o .
. o cY
b3 0 ey
Xy B '
s o .
s o A
.
Y K ’
. o .
- 0. *
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> .
o (Y
H R 3
o
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o

o
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X
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© o o ©

Original decision
boundary is an ellipse
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Application Examples

Kernel Methods can be applied for many different
problems, e.q.:

* Density estimation (unsupervised learning)
® Regression

* Principal Component Analysis (PCA)

e Classification

Most important Kernel Methods are

e Support Vector Machines

e Gaussian Processes
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Kernelization

* Many existing algorithms can be converted into
kernel methods

* This process is called “kernelization™
|dea:

e express similarities of data points in terms of an
inner product (dot product)

e replace all occurrences of that inner product by
the kernel function

This is called the kernel trick
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Example: Nearest Neighbor

* The NN classifier selects the label of the nearest
neighbor in Euclidean distance

Ixi — x;[|° = x; x; +x; X; — 2%; X,

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Example: Nearest Neighbor

* The NN classifier selects the label of the nearest
neighbor in Euclidean distance

T T

Ixi — x;[|° = x; x; +x; X; — 2%; X,

e \We can now replace the dot products by a valid
Mercer kernel and we obtain:

d(Xi7Xj)2 — k(Xivxi) + k(vaxj) _ Zk(X%Xj)
* This is a kernelized nearest-neighbor classifier
* \We do not explicitly compute feature vectors!
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Back to Linear Regression (Rep.)

We had the primal and the dual formulation:

1 1 A
J(w) = §WT(I)T(I)W —wdlt + itTt — §WTW

1 1 A
J(a) = iaTKKa —a' Kt + §tTt + §aTKa

with the dual solution:
a = (K —+ )\IN)_lt

This we can use to make predictions (MAP):

F(x") = wTg(x") = a"Be(x") = k(x*)" (K + Ay) "t
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Observations

* \We have found a way to predict function values
of y for new input points x*

* As we used regularized regression, we can
equivalently find the predictive distribution by

marginalizing out the parameters w
Questions:
e Can we find a closed form for that distribution?

e How can we model the uncertainty of our
prediction?

e Can we use that for classification?
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Gaussian Marginals and Conditionals

First, we need some formulae:

Assume we have two variables x, and x; that are
jointly Gaussian distributed, i.e. V(x| p, )

with
— Xa — Hg _ Zaa Za,b
3 (Xb> a <P’b> E—(Zba Ebb)
Then the cond. distribution p(x. | x,) = N(x | g, Sapp)

Where Haolp = g + Zabz&l (Xb o u’b)
and Za b — Zaa — 2a,bij&jlzba

The marginal is p(x.) = N (X4 | o) Zaa)
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Gaussian Marginals and Conditionals

Main idea of the proof for the conditional (using
inverse of block matrices):

Zaa Za,b - L I 0 (Z/be)_l 0 I _Zabz&)l
Sha  Lbb AN VS | 0 M 0 I

The lower line corresponds to a quadratic form
that is only dependent on p(x;), I.e. the rest can
be identified with the conditional Normal
distribution p(x, | x3).

(for details see, e.g. Bishop or Murphy)
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Definition

Definition: A Gaussian process is a collection of
random variables, any finite number of which have
a joint Gaussian distribution.

The number of random variables can be infinite!

This means: a GP is a Gaussian distribution over
functions!

To specify a GP we need:
mean function: m(x) = E[y(x)]
covariance function:

k(x1,x2) = Ely(x1) — m(x1)y(x2) — m(x2)]
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1 (0]
05¢t
O
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0 0.2 0.4 0.6 0.8 ]

e green line: sinusoidal data source
* blue circles: data points with Gaussian noise

e red line: mean function of the Gaussian
process
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How Can We Handle Infinity?

|dea: split the (infinite) number of random

variables into a finite and an infinite subset.

_ (LX) Iy 2f i
= () () (s )

finite part Infinite part

From the marginalization property we get:

plxs) = [ plocs )i = Ny | 1y, 51)

This means we can use finite vectors.
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A Simple Example

In Bayesian linear regression, we had y(x) = ¢(x)'w
with prior probability w ~ A(0,3%,). This means:

[y (x)] = ¢(x)" E[w] =0
ily(x1)y(x2))] = o(x1) E[ww )6 (x2) = ¢(x1)" Sy (x2)

Any number of function values y(x1),...,y(xn)
is jointly Gaussian with zero mean.

The covariance function of this process is
k(x1,%2) = ¢(x1)" Lpo(x2)
In general, any valid kernel function can be used.
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The Covariance Function

The most used covariance function (kernel) is:

1
_ 2 2 2
k(Xp,Xq) = 0% exp( 5 (Xp —Xq)7) + 05,0,
signal variance length scale noise variance

It Is known as “squared exponential”, “radial basis
function” or “Gaussian kernel”.

Other possibilities exist, e.g. the exponential

kernel:
k(va Xq) — eXP(_‘9|Xp — XqD

This is used in the “Ornstein-Uhlenbeck” process.
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Sampling from a GP

Just as we can sample from a Gaussian
distribution, we can also generate samples from
a GP. Every sample will then be a function!

Process:

1.Choose a number of input points xj,...,x},

2.Compute the covariance matrix K where

Kij = ]C(X;F,X;f)

3.Generate a random Gaussian vector from
vy ~ N(0, K)

4.Plot the values x3,...,x%, versus vi,...,y:,
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Sampling from a GP

3 - - - 3
1.5}
O !
—1.5¢
-1 =0.5 0 0.5 1 -1 =0.5 0 0.5
Sqguared exponential kernel Exponential kernel
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