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GP Application Example:  
Semantic Mapping from Streams
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Semantic Mapping from Streams

Learning semantic maps from data streams means: 

• we must deal with large amounts of data. 

• data is not independent. 

• the task is essentially an online learning problem.

2

Hand-crafted 3D semantic map Benchmark data for semantic mapping
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Semantic Mapping from Streams

A good approach to address these issues is  
Active Learning.

3

Hand-crafted 3D semantic map Benchmark data for semantic mapping
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• To reduce the required training data, the learner 
can select the data it needs to learn from. 

• This is called active learning 

• Major advantages: 

• only those samples where classification is hard are 
used for re-training 

• humans only need to give ground truth labels for a 
smaller set of samples 

• In principle, active learning can be used with 
offline and online learning, but online makes 
more sense

4
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Active Learning
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Optimization
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Active Learning
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Optimization Prediction
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Active Learning

7

Optimization Prediction

Training data New Data

function

f(x)

“Laptop”

“Cup”
f(x)

X

Y

f(x)

training 
data

?

Uncertainty, 
Labels



PD Dr. Rudolph Triebel 
Computer Vision GroupOnline Learning

Active Learning
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Optimization Prediction
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Active Learning
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Optimization Prediction

Training data New Data

Label Query

Supervisor

function 

f(x)
Extend training 

data
New training  

data
Uncertainty, 

Labels

Major Benefits: 

• Adapts to new situations 

• Requires less training samples
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Uncertainty Estimates

• A key step in active learning is the selection step 

• It requires a good estimate of uncertainties 

• Examples for classification algorithms to compute 
uncertainties: 

• Support Vector Machine (“Platt scaling”) 

• Gaussian Process Classifier (“predictive variance”) 

• Tree-based classifiers (entropy in leaf nodes)

11

But: It is important how uncertainty 
correlates to incorrect classifications!
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Uncertainty Estimation: An Example

12

Comparison by evaluation on an unseen class:

Ground Truth GP Classification
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The GP is less 
overconfident 
than the SVM!

[Paul, Triebel, Rus, 
Newman, IROS 2012]

SVM GPC

uncertainty uncertainty



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The Informative Vector Machine

Main differences to standard GP classifier: 

• it only uses a subset (“active set”) of training points 

• the (inverse) posterior covariance matrix is computed 
incrementally 

Decision of inclusion in the  
active set based on infor-  
nation-theoretic criterion 

Slight caveat: Training of  
hyper-parameters needs 
to be done iteratively

13

From: http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/ivm/

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/ivm/
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Active Learning with an IVM

Ongoing Learning algorithm 

• New test data arrives 

• Classifier predicts a  
class label and decides 
if it is uncertain 

• The most uncertain  
points are used for query 

• Training set is extended 
and next training round  
starts

14

Data: training data (X ,Y), initial kernel parameters ✓0, test data X ⇤
,

active set size fraction q
i 0

while X ⇤ 6= ; do
(✓i+1, Ii+1) TrainIVM(X ,Y, q, ✓i)
extract next b test points into X ⇤

i

P  ;
forall the x

⇤ 2 X ⇤
i do

z  IVMPrediction(Ii+1, ✓i+1,x⇤
)

s ComputeRetrainingScore(z,x⇤,X ,Y)
if s > # then P  P [ {(x⇤, s)}

end

sort P by decreasing values of s
X+  ;, Y+  ;
for j  1 to MIN(r, |P|) do

(x

+
j , sj) element j of P

y+j  AskLabelFromUser (x

+
j )

X+  X+ [ {x+
j }

Y+  Y+ [ {y+j }
end

X  X [ X+

Y  Y [ Y+

i i+ 1

end
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples

15
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set

16
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set

17

NO!  
(low entropy change)
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set

18

YES!  
(high entropy change)
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set 

• use the entropy difference 
to rate the new point

19
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set 

• use the entropy difference 
to rate the new point 

• throw out the point with  
the lowest rating 

“forgetting”

20
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Semantic Mapping: Results (Learning)

• IVM “overtakes” and 
stays better than SVM 

• Active learning better 
than passive learning 

• Random selection is 
not better 

21
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Semantic Mapping: Results (Forgetting)

Forgetting has almost no influence on the 
classification result!

22
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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are 
sometimes hard to obtain 

• Clustering is unsupervised learning, i.e. it tries to 
learn only from the data 

• Main idea: find a similarity measure and group 
similar data objects together 

• Clustering is a very old research field, many 
approaches have been suggested 

• Main problem in most methods: how to find a 
good number of clusters

24
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

25

learning from a training 
data set, inference on 

the test data

In unsupervised learning, there is no ground truth 
information given. 

Most Unsupervised Learning methods are based on 
Clustering.
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K-means Clustering

• Given: data set                    , number of clusters K 
• Goal: find cluster centers                      so that  
 
 
 
is minimal, where             if      is assigned to       

• Idea: compute       and      iteratively 

• Start with some values for the cluster centers 

• Find optimal assignments 

• Update cluster centers using these assignments 

• Repeat until assignments or centers don’t change 

26

J =
NX

n=1

KX

k=1

rnkkxn � µkk

{x1, . . . ,xN}

{µ1, . . . ,µK}

rnk = 1 xn µk

rnk µk

rnk

2
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K-means Clustering

27

{µ1, . . . ,µK}Initialize cluster means:
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

K-means Clustering

28

Find optimal assignments:
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@J

@µk

= 2
NX

n=1

rnk(xn � µk)
!
= 0

) µk =

PN
n=1 rnkxnPN
n=1 rnk

K-means Clustering

29

Find new optimal means:
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K-means Clustering
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

Find new optimal assignments:
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K-means Clustering

31

Iterate these steps until means and 
assignments do not change any more
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2D Example

32

• Real data set 
• Random initialization

• Magenta line is “decision 
boundary”
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The Cost Function

• After every step the cost function J is minimized 

• Blue steps: update assignments 

• Red steps: update means 

• Convergence after 4 rounds

33
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K-means for Segmentation

34
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• K-means converges always, but the minimum is 
not guaranteed to be a global one 

• There is an online version of K-means  

•After each addition of xn, the nearest center μk is 

updated: 

• The K-medoid variant: 

•Replace the Euclidean distance by a general measure 
V.

K-Means: Additional Remarks

35

µnew

k = µold

k + ⌘n(xn � µold

k )

J̃ =
NX

n=1

KX

k=1

rnkV(xn,µk)
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Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  
 
 
 
where  

36

zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)
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A Simple Example

• Mixture of three Gaussians with mixing coefficients 

• Left: all three Gaussians as contour plot 

• Right: samples from the mixture model, the red 
component has the most samples

37
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Parameter Estimation

• From a given set of training data                    we 
want to find parameters 
so that the likelihood is maximized (MLE):  
 
 
 
or, applying the logarithm:  

• However: this is not as easy as maximum-
likelihood for single Gaussians!

38

{x1, . . . ,xN}
(⇡1,...,K ,µ1,...,K ,⌃1,...,K)

p(x1, . . . ,xN | ⇡1,...,K ,µ1,...,K ,⌃1,...,K) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

log p(X | ⇡,µ,⌃) =
NX

n=1

log

KX

k=1

⇡kN (xn | µk,⌃k)
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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively; compute a “weighted 
average” over the latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 

• First, we consider EM for GMMs

39
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Expectation-Maximization for GMM

• First, we define the responsibilities:

40

�(znk) = p(znk = 1 | xn) znk 2 {0, 1}
X

k

znk = 1
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Expectation-Maximization for GMM

• First, we define the responsibilities:

41

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     : 

42

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     :  
 
 
 
and we obtain: 

43

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0

µk =

PN
n=1 �(znk)xnPN
n=1 �(znk)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where: 
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
n=1 �(znk)

⇡k

@log p(X | ⇡,µ,⌃)
@⇡k

!
= 0

KX

k=1

⇡k = 1
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where:  
 
and the result is:  
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
n=1 �(znk)

⇡k

@log p(X | ⇡,µ,⌃)
@⇡k

!
= 0

KX

k=1

⇡k = 1

⇡k =
1

N

NX

n=1

�(znk)
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Algorithm Summary

1.Initialize means     covariance matrices     and 
mixing coefficients 

2.Compute the initial log-likelihood 

3. E-Step. Compute the responsibilities:  
 
 

4. M-Step. Update the parameters: 
 

5.Compute log-likelihood; if not converged go to 3.
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=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

�(znk)

log p(X | ⇡,µ,⌃)

µk ⌃k

⇡k

µnew
k =

PN
n=1 �(znk)xnPN
n=1 �(znk)

⌃new
k =

PN
n=1 �(znk)(xn � µnew

k )(xn � µnew
k )T

PN
n=1 �(znk)

⇡new
k =

1

N

NX

n=1

�(znk)
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The Same Example Again

47
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Observations

• Compared to K-means, points can now belong to 
both clusters (soft assignment) 

• In addition to the cluster center, a covariance is 
estimated by EM 

• Initialization is the same as used for K-means 

• Number of iterations needed for EM is much higher 

• Also: each cycle requires much more computation 

• Therefore: start with K-means and run EM on the 
result of K-means (covariances can be initialized to 
the sample covariances of K-means) 

• EM only finds a local maximum of the likelihood!
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Problems with MLE for Gaussian Mixtures

• Assume that for one k the mean     is exactly at a 
data point 

•For simplicity: assume that  

•Then:   

•This means that the overall log-likelihood can be 
maximized arbitrarily by letting              (overfitting)            

• Another problem is the identifiability: 

•The order of the Gaussians is not fixed, therefore: 

•There are K! equivalent solutions to the MLE problem

49

µk

xn

⌃k = �2
kI

�k ! 0

N (xn | xn,�
2
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Overfitting with MLE for Gaussian Mixtures

• One Gaussian fits exactly to one data point 

• It has a very small variance, i.e. contributes 
strongly to the overall likelihood 

• In standard MLE, there is no way to avoid this!

50
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di =
NX

j=1

wij

D =

Spectral Clustering

• Consider an undirected graph that connects all 
data points 

• Edge weights wij are the similarities (“closeness”) 

• We define the weighted degree    of a node as the 
sum of all outgoing edges

51

w11 w12 w13 w14

w12 w22 w23 w24

w13 w23 w33 w34

w14 w24 w34 w44

W =

di

d1
d2
d3
d4

0 0 0
0 0 0
0 0 0
0 0 0
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvalue 0

52

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite

53

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite 

• With these properties we can show: 

Theorem: The set of eigenvectors of L with 

eigenvalue 0 is spanned by the indicator vectors  
                  , where       are the K connected 
components of the graph.
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L = D �W

1A1 , . . . ,1AK Ak
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The Spectral Clustering Algorithm

• Input: Similarity matrix W 

• Compute L = D - W 

• Compute the eigenvectors that correspond to the 

K smallest eigenvalues 

• Stack these vectors as columns in a matrix U 

• Treat each row of U as a K-dim data point 

• Cluster the N rows with K-means clustering 

• The indices of the rows that correspond to the 
resulting clusters are those of the original data 
points.
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An Example

• Spectral clustering can handle complex problems 
such as this one 

• The complexity of the algorithm is O(N ), because 
it has to solve an eigenvector problem 

• But there are efficient variants of the algorithm
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Further Remarks

• To account for nodes that are highly connected, 
we can use a normalized version of the graph 
Laplacian 

• Two different methods exist: 

•    

•    

• These have similar eigenspaces than the original 
Laplacian L 

• Clustering results tend to be better than with the 
unnormalized Laplacian
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Lrw = D�1L = I �D�1W

Lsym = D� 1
2LD� 1

2 = I �D� 1
2WD� 1

2
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Summary

• Several Clustering methods exist: 

•K-means clustering and Expectation-Maximization, 
both based on Gaussian Mixture Models  

•K-means uses hard assignments, whereas EM uses 
soft assignments and estimates also the covariances 

•Spectral clustering uses the graph Laplacian and 
performs an eigenvector analysis 

• Major Problem:  

•most clustering algorithms require the number of 
clusters to be given

58


