

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

GP Application Example: Semantic Mapping from Streams

Semantic Mapping from Streams

Hand-crafted 3D semantic map

Benchmark data for semantic mapping

Learning semantic maps from data streams means:

- we must deal with large amounts of data.
- data is not independent.
- the task is essentially an online learning problem.

Semantic Mapping from Streams

Hand-crafted 3D semantic map

Benchmark data for semantic mapping

A good approach to address these issues is **Active Learning**.

- To reduce the required training data, the learner can select the data it needs to learn from.
- This is called **active** learning
- Major advantages:
 - only those samples where classification is hard are used for re-training
 - humans only need to give ground truth labels for a smaller set of samples
- In principle, active learning can be used with offline and online learning, but online makes more sense

Computer Vision Group

Major Benefits:

- Adapts to new situations
- Requires less training samples

Uncertainty Estimates

- A key step in active learning is the selection step
- It requires a good estimate of **uncertainties**
- Examples for classification algorithms to compute uncertainties:
 - Support Vector Machine ("Platt scaling")
 - Gaussian Process Classifier ("predictive variance")
 - Tree-based classifiers (entropy in leaf nodes)

But: It is important how uncertainty correlates to incorrect classifications!

Uncertainty Estimation: An Example

Ground Truth

GP Classification

Uncertainty

Comparison by evaluation on an **unseen** class:

The GP is less overconfident than the SVM!

> [Paul, Triebel, Rus, Newman, IROS 2012]

The Informative Vector Machine

Main differences to standard GP classifier:

- it only uses a **subset** ("active set") of training points

Decision of inclusion in the active set based on infornation-theoretic criterion

Slight caveat: Training of hyper-parameters needs to be done iteratively

Active Learning with an IVM

Ongoing Learning algorithm

- New test data arrives
- Classifier predicts a class label and decides if it is uncertain
- The most uncertain points are used for query
- Training set is extended and next training round starts

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set.

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set.

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set.

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

- check whether it should be added to the Active Set.
- use the entropy difference to rate the new point

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

- check whether it should be added to the Active Set.
- use the entropy difference to rate the new point
- throw out the point with the lowest rating

"forgetting"

Semantic Mapping: Results (Learning)

- IVM "overtakes" and stays better than SVM
- Active learning better than passive learning
- Random selection is not better

Semantic Mapping: Results (Forgetting)

Forgetting has almost no influence on the classification result!

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

5. Clustering

Motivation

- Supervised learning is good for interaction with humans, but labels from a supervisor are sometimes hard to obtain
- Clustering is unsupervised learning, i.e. it tries to learn only from the data
- Main idea: find a similarity measure and group similar data objects together
- Clustering is a very old research field, many approaches have been suggested
- Main problem in most methods: how to find a good number of clusters

In unsupervised learning, there is no ground truth information given.

Most Unsupervised Learning methods are based on **Clustering**.

- Given: data set $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$, number of clusters K
- Goal: find cluster centers $\{\mu_1, \ldots, \mu_K\}$ so that

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

is minimal, where $r_{nk} = 1$ if \mathbf{x}_n is assigned to $\boldsymbol{\mu}_k$

- Idea: compute r_{nk} and μ_k iteratively
- Start with some values for the cluster centers
- Find optimal assignments r_{nk}
- Update cluster centers using these assignments
- Repeat until assignments or centers don't change

Initialize cluster means: $\{ \mu_1, \ldots, \mu_K \}$

Find optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\| \\ 0 & \text{otherwise} \end{cases}$$

Find new optimal

I means:

$$\frac{\partial J}{\partial \boldsymbol{\mu}_k} = 2 \sum_{n=1}^N r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) \stackrel{!}{=} 0$$

$$\Rightarrow \boldsymbol{\mu}_k = \frac{\sum_{n=1}^N r_{nk} \mathbf{x}_n}{\sum_{n=1}^N r_{nk}}$$

Х

Find new optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\| \\ 0 & \text{otherwise} \end{cases}$$

Iterate these steps until means and assignments do not change any more

2D Example

Real data setRandom initialization

 Magenta line is "decision boundary"

The Cost Function

- After every step the cost function J is minimized
- Blue steps: update assignments
- Red steps: update means
- Convergence after 4 rounds

K-means for Segmentation

Original image

K-Means: Additional Remarks

- K-means converges always, but the minimum is not guaranteed to be a global one
- There is an **online** version of *K*-means
 - After each addition of \mathbf{x}_n , the nearest center $\boldsymbol{\mu}_k$ is updated: $\boldsymbol{\mu}_k^{\text{new}} = \boldsymbol{\mu}_k^{\text{old}} + \eta_n(\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{old}})$

• The *K*-medoid variant:

• Replace the Euclidean distance by a general measure V. $\tilde{J} = \sum_{k=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_{n}, \boldsymbol{\mu}_{k})$

n=1 k=1

Mixtures of Gaussians

- Assume that the data consists of K clusters
- The data within each cluster is Gaussian
- For any data point x we introduce a K-dimensional binary random variable z so that:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \underbrace{p(z_k = 1)}_{=:\pi_k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where $z_k \in \{0, 1\}, \quad \sum_{k=1}^{K} z_k = 1$

A Simple Example

Mixture of three Gaussians with mixing coefficients

- Left: all three Gaussians as contour plot
- Right: samples from the mixture model, the red component has the most samples

Parameter Estimation

• From a given set of training data $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$ we want to find parameters $(\pi_{1,\ldots,K}, \boldsymbol{\mu}_{1,\ldots,K}, \boldsymbol{\Sigma}_{1,\ldots,K})$ so that the likelihood is maximized (MLE):

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N \mid \pi_{1,\ldots,K},\boldsymbol{\mu}_{1,\ldots,K},\boldsymbol{\Sigma}_{1,\ldots,K}) = \prod_{n=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

or, applying the logarithm:

$$\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 However: this is not as easy as maximumlikelihood for single Gaussians!

Expectation-Maximization

- EM is an elegant and powerful method for MLE problems with latent variables
- Main idea: model parameters and latent variables are estimated iteratively; compute a "weighted average" over the latent variables (expectation)
- A typical example application of EM is the Gaussian Mixture model (GMM)
- However, EM has many other applications
- First, we consider EM for GMMs

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n) \qquad z_{nk} \in \{0, 1\}$$
$$\sum z_{nk} = 1$$

k

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\boldsymbol{\mu}_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

• We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k : $\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \pi_k} \stackrel{!}{=} \mathbf{0} \quad \text{where:} \quad \sum_{k=1}^{K} \pi_k = 1$

k=1

• We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \pi_k} \stackrel{!}{=} \mathbf{0} \quad \text{where:} \quad \sum_{k=1}^K \pi_k = 1$$

and the result is: $\pi_k = \frac{1}{N} \sum_{n=1}^N \gamma(z_{nk})$

Algorithm Summary

1.Initialize means μ_k covariance matrices Σ_k and mixing coefficients π_k

2.Compute the initial log-likelihood $\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)$

3. E-Step. Compute the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

4. M-Step. Update the parameters:

$$\boldsymbol{\mu}_{k}^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \Sigma_{k}^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}})^{T}}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \pi_{k}^{\text{new}} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

5.Compute log-likelihood; if not converged go to 3.

The Same Example Again

Machine Learning for Computer Vision

47

PD Dr. Rudolph Triebel Computer Vision Group

Observations

- Compared to K-means, points can now belong to both clusters (soft assignment)
- In addition to the cluster center, a covariance is estimated by EM
- Initialization is the same as used for K-means
- Number of iterations needed for EM is much higher
- Also: each cycle requires much more computation
- Therefore: start with K-means and run EM on the result of K-means (covariances can be initialized to the sample covariances of K-means)
- EM only finds a **local** maximum of the likelihood!

Problems with MLE for Gaussian Mixtures

- Assume that for one k the mean μ_k is exactly at a data point \mathbf{x}_n
 - For simplicity: assume that $\Sigma_k = \sigma_k^2 I$

• Then:
$$\mathcal{N}(\mathbf{x}_n \mid \mathbf{x}_n, \sigma_k^2 I) = \frac{1}{\sqrt{2\pi}\sigma_k^D}$$

- This means that the overall log-likelihood can be maximized arbitrarily by letting $\sigma_k \rightarrow 0$ (overfitting)
- Another problem is the identifiability:
 - The order of the Gaussians is not fixed, therefore:
 - There are *K*! equivalent solutions to the MLE problem

Overfitting with MLE for Gaussian Mixtures

- One Gaussian fits exactly to one data point
- It has a very small variance, i.e. contributes strongly to the overall likelihood
- In standard MLE, there is no way to avoid this!

- Consider an undirected graph that connects all data points
- Edge weights *w*_{*ij*} are the **similarities** ("closeness")
- We define the weighted degree d_i of a node as the sum of all outgoing edges

$$W =$$

W12	W22	W23	W24
W13	W23	W33	W34
<i>W</i> 14	W24	W34	W44

*w*₁₁ *w*₁₂ *w*₁₃ *w*₁₄

• The Graph Laplacian is defined as:

L = D - W

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvalue 0

• The Graph Laplacian is defined as:

L = D - W

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite

• The Graph Laplacian is defined as:

L = D - W

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite
- With these properties we can show:

Theorem: The set of eigenvectors of *L* with eigenvalue 0 is spanned by the indicator vectors $1_{A_1}, \ldots, 1_{A_K}$, where A_k are the *K* connected components of the graph.

The Spectral Clustering Algorithm

- Input: Similarity matrix W
- Compute L = D W
- Compute the eigenvectors that correspond to the K smallest eigenvalues
- Stack these vectors as columns in a matrix U
- Treat each row of *U* as a *K*-dim data point
- Cluster the *N* rows with *K*-means clustering
- The indices of the rows that correspond to the resulting clusters are those of the original data points.

An Example

- Spectral clustering can handle complex problems such as this one
- The complexity of the algorithm is O(N³), because it has to solve an eigenvector problem
- But there are efficient variants of the algorithm

Further Remarks

- To account for nodes that are highly connected, we can use a normalized version of the graph Laplacian
- Two different methods exist:

•
$$L_{rw} = D^{-1}L = I - D^{-1}W$$

•
$$L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

- These have similar eigenspaces than the original Laplacian L
- Clustering results tend to be better than with the unnormalized Laplacian

Summary

- Several Clustering methods exist:
 - K-means clustering and Expectation-Maximization, both based on Gaussian Mixture Models
 - K-means uses hard assignments, whereas EM uses soft assignments and estimates also the covariances
 - Spectral clustering uses the graph Laplacian and performs an eigenvector analysis
- Major Problem:
 - most clustering algorithms require the number of clusters to be given

