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•Non-parametric implementation of Bayes filter 

•Represents the belief (posterior)                 by a set of 

random state samples. 

•This representation is approximate. 

•Can represent distributions that are not Gaussian. 

•Can model non-linear transformations. 

Basic principle: 

•Set of state hypotheses (“particles”) 

•Survival-of-the-fittest

The Particle Filter
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 Algorithm Bayes_filter                : 

1.  if    is a sensor measurement    then 

2.   

3.      for all    do 

4.   

5.   

6.      for all    do 

7.  else if    is an action    then 

8.      for all    do 

9.  return      

Machine Learning for Computer 
Vision

The Bayes Filter Algorithm (Rep.)
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Set of weighted samples: 
 
 

Mathematical Description

The samples represent the probability distribution:

State hypotheses Importance weights

Point mass 
distribution 
(“Dirac” )
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The Particle Filter Algorithm

 Algorithm Particle_filter                   : 

1.    

2.      for              to      do 

3.   

4.   

5.          

6.      for              to       do 

7.  return      

Sample from 
proposal

Compute sample 
weights

Resampling
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Localization with Particle Filters

•Each particle is a potential pose of the robot 

•Proposal distribution is the motion model of the robot 

(prediction step) 

•The observation model is used to compute the 

importance weight (correction step) 

Randomized algorithms are usually called Monte Carlo 

algorithms, therefore we call this:

Monte-Carlo Localization
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A Simple Example

• The initial belief is a uniform distribution (global 
localization). 

• This is represented by an (approximately) uniform 
sampling of initial particles.
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Sensor Information

The sensor model                    is used to compute the 
new importance weights:
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Robot Motion

After resampling and applying the motion model  
                          the particles are distributed more 
densely at three locations.
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Again, we set the new importance weights equal to the 
sensor model.

Sensor Information
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Resampling and application of the motion model: 

One location of dense particles is left. 

                             The robot is localized.

Robot Motion
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A Closer Look at the Algorithm…

 Algorithm Particle_filter                   : 

1.    

2.      for              to      do 

3.   

4.   

5.          

6.      for              to       do 

7.  return      

Sample from 
proposal

Compute sample 
weights

Resampling
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Sampling from Proposal

This can be done in the following ways: 

• Adding the motion vector to each particle directly 
(this assumes perfect motion) 

• Sampling from the motion model                           , 
e.g. for a 2D motion with translation velocity v and 
rotation velocity w we have:

Position

Orientation
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Start

Motion Model Sampling (Example)
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Computation of the sample weights: 

• Proposal distribution: 
(we sample from that using the motion model) 

• Target distribution (new belief): 
(we can not directly sample from that → importance 
sampling) 

• Computation of importance weights:

Computation of Importance Weights
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Proximity Sensor Models

• How can we obtain the sensor model                    ? 

• Sensor Calibration:

Laser sensor Sonar sensor
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• Given: Set      of weighted samples. 

• Wanted : Random sample, where the probability of 
drawing xi is equal to wi. 

• Typically done M times with replacement to generate 
new sample set     .

Resampling

     for              to       do
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w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

•Standard n-times sampling  
results in high variance 

•This requires more particles 

•O(nlog n) complexity

• Instead: low variance sampling  
only samples once 

• Linear time complexity 

• Easy to implement

17



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Sample-based Localization (sonar)
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Initial Distribution
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After Ten Ultrasound Scans
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After 65 Ultrasound Scans
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Estimated Path
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Kidnapped Robot Problem

The approach described so far is able to  

• track the pose of a mobile robot and to 

• globally localize the robot. 

• How can we deal with localization errors (i.e., 
the kidnapped robot problem)? 

Idea: Introduce uniform samples at every 
resampling step 

• This adds new hypotheses
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Summary

• There are mainly 4 different types of sampling 
methods: Transformation method, rejections 
sampling, importance sampling and MCMC 

• Transformation only rarely applicable 

• Rejection sampling is often very inefficient 

• Importance sampling is used in the particle filter 
which can be used for robot localization 

• An efficient implementation of the resampling 
step is the low variance sampling

24
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Markov Chain Monte Carlo

• In high-dimensional spaces, rejection sampling 
and importance sampling are very inefficient 

• An alternative is Markov Chain Monte Carlo 
(MCMC) 

• It keeps a record of the current state and the 
proposal depends on that state 

• Most common algorithms are the Metropolis-
Hastings algorithm and Gibbs Sampling
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Markov Chains Revisited

A Markov Chain is a distribution over discrete-
state random variables                 so that 

The graphical model of a Markov chain is this:  

  

We will denote                  as a row vector   

A Markov chain can also be visualized as a state 
transition diagram.
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x1, . . . ,xM

p(x1, . . . ,xT ) = p(x1)p(x2 | x1) · · · = p(x1)
TY

t=2

p(xt | xt�1)

p(xt | xt�1) ⇡t
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The State Transition Diagram

A33 A33

A11 A11k=1

k=2

k=3

time

t-2 t-1 t

28

st
at
es



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Some Notions

• The Markov chain is said to be homogeneous if 
the transitions probabilities are all the same at 
every time step t (here we only consider 
homogeneous Markov chains) 

• The transition matrix is row-stochastic, i.e. all 
entries are between 0 and 1 and all rows sum 
up to 1 

• Observation: the probabilities of reaching the 
states can be computed using a vector-matrix 
multiplication
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The Stationary Distribution

The probability to reach state k is 

Or, in matrix notation: 

We say that      is stationary if  

Questions: 

•How can we know that a stationary distributions 
exists? 

•And if it exists, how do we know that it is 
unique?
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⇡t = ⇡t�1A

⇡k,t =
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The Stationary Distribution (Existence)

To find a stationary distribution we need to  
solve the eigenvector problem               

The stationary distribution is then            where   
is the eigenvector for which the eigenvalue is 1. 

This eigenvector needs to be normalized so that 
it is a valid distribution.  

Theorem (Perron-Frobenius): Every row-
stochastic matrix has such an eigen vector, but 
this vector may not be unique.
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Stationary Distribution (Uniqueness)

• A Markov chain can have many stationary 
distributions 

• Sufficient for a unique stationary distribution: 
we can reach every state from any other state in 
finite steps at non-zero probability  
(i.e. the chain is ergodic) 

• This is equivalent to the property that the 
transition matrix is irreducible:

32

1 2 3 4

0.9

0.9
0.5 0.5

1.00.10.1

8i, j 9m (Am)ij > 0



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Main Idea of MCMC

• So far, we specified the transition probabilities 
and analysed the resulting distribution 

• This was used, e.g. in HMMs 

Now:  

• We want to sample from an arbitrary distribution  

• To do that, we design the transition probabilities 
so that the resulting stationary distribution is our 
desired (target) distribution!
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Detailed Balance

34

Definition: A transition distribution    satisfies the 
property of detailed balance if 

The chain is then said to be reversible.

⇡t

⇡iAij = ⇡jAji

⇡1

⇡3 ⇡1A13 + · · ·

⇡3A31 + · · ·

A31

t-1 t

A13
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Making a Distribution Stationary

Theorem: If a Markov chain with transition matrix 

A is irreducible and satisfies detailed balance wrt. 
the distribution   , then    is a stationary 
distribution of the chain. 

Proof:  

it follows              . 

This is a sufficient, but not necessary condition.
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Sampling with a Markov Chain 

The idea of MCMC is to sample state transitions 
based on a proposal distribution q. 

The most widely used algorithm is the 
Metropolis-Hastings (MH) algorithm. 

In MH, the decision whether to stay in a given 
state is based on a given probability. 

If the proposal distribution is            , then we 
stay in state     with probability   
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q(x0 | x)
x
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1,

p̃(x0)q(x | x0)

p̃(x)q(x0 | x)

◆

Unnormalized 
target distribution
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The Metropolis-Hastings Algorithm

• Initialize 

• for 

•define 

•sample 

•compute acceptance probability 

•compute  

•sample 

•set new sample to
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution. 

Theorem: If                   is the transition 
probability of the MH algorithm, then   

Proof:

38

pMH(x0 | x)

p(x)pMH(x0 | x) = p(x0)pMH(x | x0)
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution. 

Theorem: If                   is the transition 
probability of the MH algorithm, then   

Note: All formulations are valid for discrete 
and for continuous variables!
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pMH(x0 | x)

p(x)pMH(x0 | x) = p(x0)pMH(x | x0)
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Choosing the Proposal

• A proposal distribution is valid if it gives a non-
zero probability of moving to the states that 
have a non-zero probability in the target. 

• A good proposal is the Gaussian, because it 
has a non-zero probability for all states. 

• However: the variance of the Gaussian is 
important! 

•with low variance, the sampler does not explore 
sufficiently, e.g. it is fixed to a particular mode 

•with too high variance, the proposal is rejected too 
often, the samples are a bad approximation
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Example

Target is a mixture of 2 
1D Gaussians. 

Proposal is a Gaussian 
with different variances.
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Gibbs Sampling

• Initialize 

• For  

•Sample 

•Sample 

•... 

•Sample  

Idea: sample from the full conditional 

This can be obtained, e.g. from the Markov 
blanket in graphical models.
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{zi : i = 1, . . . ,M}
⌧ = 1, . . . , T

z(⌧+1)
1 ⇠ p(z1 | z(⌧)2 , . . . , z(⌧)M )

z(⌧+1)
2 ⇠ p(z2 | z(⌧+1)

1 , . . . , z(⌧)M )

z(⌧+1)
M ⇠ p(zM | z(⌧+1)

1 , . . . , z(⌧+1)
M�1 )
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials

43

 (xt) = N (yt | xt,�
2)

 (xs, xt) = exp(Jxsxt)

xt

yt

xs

xt 2 {�1, 1}
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials 

• Sample each pixel in turn 
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Gibbs Sampling is a Special Case of MH

• The proposal distribution in Gibbs sampling is 

• This leads to an acceptance rate of: 

• Although the acceptance is 100%, Gibbs 
sampling does not converge faster, as it only 
updates one variable at a time.
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q(x0 | x) = p(x0
i | x�i)I(x0

�i = x�i)

↵ =
p(x0)q(x | x0)
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Summary

• Markov Chain Monte Carlo is a family of sampling 
algorithms that can sample from arbitrary 
distributions by moving in state space 

• Most used methods are the Metropolis-Hastings 
(MH) and  the Gibbs sampling method 

• MH uses a proposal distribution and accepts a 
proposed state randomly 

• Gibbs sampling does not use a proposal 
distribution, but samples from the full conditionals
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Motivation

•A major task in probabilistic reasoning is to 
evaluate the posterior distribution              of a 

set of latent variables Z given data X (inference) 

However: This is often not tractable, e.g. 
because the latent space is high-dimensional 

•Two different solutions are possible: sampling 
methods and variational methods. 

•In variational optimization, we seek a tractable 

distribution q that approximates the posterior. 

•Optimization is done using functionals.

48

p(Z | X)
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Motivation

•A major task in probabilistic reasoning is to 
evaluate the posterior distribution              of a 

set of latent variables Z given data X (inference) 

•However: This is often not tractable, e.g. 
because the latent space is high-dimensional 

•Two different solutions are possible: sampling 
methods and variational methods. 

•In variational optimization, we seek a tractable 

distribution q that approximates the posterior. 

•Optimization is done using functionals.
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p(Z | X)

Careful: Different notation!  
In Bishop (and in the following slides) 

 Z are hidden states  
and X are observations
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Variational Inference

In general, variational methods are concerned 
with mappings that take functions as input. 

Example: the entropy of a distribution p 

Variational optimization aims at finding functions 
that minimize (or maximize) a given functional. 

This is mainly used to find approximations to a 
given function by choosing from a family. 

The aim is mostly tractability and simplification.
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H[p] =

Z
p(x) log p(x)dx

“Functional”
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The KL-Divergence

Aim: define a functional that resembles a 

“difference” between distributions p and q 

Idea: use the average additional amount of 
information: 

This is known as the Kullback-Leibler divergence 

It has the properties: 

This follows from Jensen’s inequality
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�
Z

p(x) log q(x)dx�
✓
�
Z

p(x) log p(x)dx

◆
= �

Z
p(x) log

q(x)

p(x)
dx

KL(qkp) 6= KL(pkq)

= KL(pkq)

KL(pkq) � 0 KL(pkq) = 0 , p ⌘ q
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Example: A Variational Formulation of EM

Assume for a moment that we observe X and the 

binary latent variables Z. The likelihood is then:  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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)
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Remember: 

znk 2 {0, 1},
KX

k=1

znk = 1

Example: A Variational Formulation of EM

Assume for a moment that we observe X and the 

binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk
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Remember: 

znk 2 {0, 1},
KX

k=1

znk = 1

Example: A Variational Formulation of EM

Assume for a moment that we observe X and the 

binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 
 
 
 
 
which leads to the log-formulation:
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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk

log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))
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The Complete-Data Log-Likelihood

• This is called the complete-data log-likelihood 

• Advantage: solving for the parameters  
is much simpler, as the log is inside the sum! 

• We could switch the sums and then for every 

mixture component k only look at the points that 
are associated with that component. 

• This leads to simple closed-form solutions for the 
parameters 

• However: the latent variables Z are not observed!
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log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))

(⇡k,µk,⌃k)


