
PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Repetition: 2D Gaussian Mixture Model
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Repetition: Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  
 
 
 
where  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zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)p(x | ⇡,µ,⌃)
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Repetition: Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  

• For all data points:  

3

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)p(x | ⇡,µ,⌃)

p(X | Z,⇡,µ,⌃) =
NY

n=1

KX

k=1

p(znk = 1 | ⇡)N (xn | µk,⌃k)
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Remember: 

znk 2 {0, 1},
KX

k=1

znk = 1

Rep.: The Complete-Data Log-Likelihood

Assume for a moment that we observe X and the 

binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 
 
 
 
 
which leads to the log-formulation:
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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk

log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))
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Recap: The Main Idea of EM

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 

5

EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))
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Recap: The Main Idea of EM

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 
where the latent variable distribution per point is:

6

EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))

p(zn | xn,✓) =
p(xn | zn,✓)p(zn | ✓)

p(xn | ✓) ✓ = (⇡,µ,⌃)

=

QK
l=1(⇡lN (xn | µl,⌃l))znl

PK
j=1 ⇡jN (xn | µj ,⌃j)
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The Main Idea of EM

The expected value of the latent variables is: 

plugging in we obtain: 

We compute this iteratively: 

1. Initialize 

2. Compute 

3. Find parameters                        that maximize this 

4. Increase i;  if not converged, goto 2. 
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E[znk] = �(znk)

EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

�(znk)(log ⇡k + logN (xn | µk,⌃k))

E[znk] = �(znk)

i = 0, (⇡i
k,µ

i
k,⌃

i
k)

(⇡i+1
k ,µi+1

k ,⌃i+1
k )

Remember: 

�(znk) = p(znk = 1 | xn)
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Why Does This Work?

• We have seen that EM maximizes the expected 
complete-data log-likelihood, but: 

• Actually, we need to maximize the log-marginal 

• It turns out that the log-marginal is maximized 
implicitly!

8

log p(X | ✓) = log

X

Z

p(X,Z | ✓)
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A Variational Formulation of EM

• We have seen that EM maximizes the expected 
complete-data log-likelihood, but: 

• Actually, we need to maximize the log-marginal 

• It turns out that the log-marginal is maximized 
implicitly!

9

log p(X | ✓) = log

X

Z

p(X,Z | ✓)

log p(X | ✓) = L(q,✓) + KL(qkp)

L(q,✓) =
X

Z

q(Z) log

p(X,Z | ✓)
q(Z)

KL(qkp) = �
X

Z

q(Z) log

p(Z | X,✓)

q(Z)
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A Variational Formulation of EM

• Thus: The Log-likelihood consists of two functionals 
 
 
where the first is (proportional to) an expected 

complete-data log-likelihood under a distribution q 
 
 
and the second is the KL-divergence between p 
and q:

10

log p(X | ✓) = L(q,✓) + KL(qkp)

L(q,✓) =
X

Z

q(Z) log

p(X,Z | ✓)
q(Z)

KL(qkp) = �
X

Z

q(Z) log

p(Z | X,✓)

q(Z)
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Visualization

• The KL-divergence is positive or 0 

• Thus, the log-likelihood is at least as large as L or: 

•L is a lower bound of the log-likelihood:

11

log p(X | ✓) � L(q,✓)
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What Happens in the E-Step?

• The log-likelihood is independent of q 

• Thus: L is maximized iff KL divergence is minimal (=0) 

• This is the case iff 

12

q(Z) = p(Z | X,✓)
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What Happens in the M-Step?

• In the M-step we keep q fixed and find new  

• We maximize the first term, the second is indep.  

• This implicitly makes KL non-zero 

• The log-likelihood is maximized even more! 

13

L(q,✓) =
X

Z

p(Z | X,✓old

) log p(X,Z | ✓)�
X

Z

q(Z) log q(Z)

✓
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Visualization in Parameter-Space

• In the E-step we compute the concave lower 
bound for given old parameters        (blue curve) 

• In the M-step, we maximize this lower bound and 
obtain new parameters  

• This is repeated (green curve) until convergence

14

✓old

✓new
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Generalizing the Idea

• In EM, we were looking for an optimal 

distribution q in terms of KL-divergence 

• Luckily, we could compute q in closed form 

• In general, this is not the case, but we can use 
an approximation instead:  

• Idea: make a simplifying assumption on q so 
that a good approximation can be found 

• For example: Consider the case where q can be 
expressed as a product of simpler terms

15

q(Z) ⇡ p(Z | X)
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Factorized Distributions

We can split up q by partitioning Z into disjoint 

sets and assuming that q factorizes over the sets: 

This is the only assumption about q! 

Idea: Optimize        by optimizing wrt. each of the 

factors of q in turn. Setting                  we have  

16

q(Z) =
MY

i=1

qi(Zi)

L(q)

L(q) =
Z Y

i

qi

 
log p(X,Z)�

X

i

log qi

!
dZ

Shorthand: 

qi  qi(Zi)

qi  qi(Zi)
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Mean Field Theory

This results in: 

where 

Thus, we have  

I.e., maximizing the lower bound is equivalent to 
minimizing the KL-divergence of a single factor 
and a distribution that can be expressed in terms 
of an expectation:

17

L(q) =
Z

qj log p̃(X,Zj)dZj �
Z

qj log qjdZj + const

L(q) = �KL(qjkp̃(X,Zj))

log p̃(X,Zj) = Ei 6=j [log p(X,Z)] + const

Ei 6=j [log p(X,Z)] =

Z
log p(X,Z)

Y

i 6=j

qidZi

+const

� j

� j

� j
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Mean Field Theory

Therefore, the optimal solution in general is 

In words: the log of the optimal solution for a  
factor    is obtained by taking the expectation with 
respect to all other factors of the log-joint proba-
bility of all observed and unobserved variables  

The constant term is the normalizer and can be 
computed by taking the exponential and 
marginalizing over  

This is not always necessary.

18

log q⇤j (Zj) = Ei 6=j [log p(X,Z)] + const

Zj

qj

� j
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Exponential Families

Definition: A probability distribution p over x is a 
member of the exponential family if it can be 
expressed as 

where η are the natural parameters and  

is the normalizer.  

h and u are functions of x.

20

p(x | ⌘) = h(x)g(⌘) exp(⌘T
u(x))

g(⌘) =

 Z
h(x) exp(⌘T

u(x))dx

!�1
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Exponential Families

Example: Bernoulli-Distribution with parameter µ

21

p(x | µ) = µx

(1 � µ)1�x

= exp(x ln µ + (1 � x) ln(1 � µ))
= exp(x ln µ + ln(1 � µ) � x ln(1 � µ))
= (1 � µ) exp(x ln µ � x ln(1 � µ))

= (1 � µ) exp

 
x ln

 
µ

1 � µ

!!

Thus, we can say

⌘ = ln
 
µ

1 � µ

!
) µ =

1

1 + exp(�⌘)) 1 � µ = 1

1 + exp(⌘)
= g(⌘)
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MLE for Exponential Families

From: 

we get: 

which means that 

22

g(⌘)

Z
h(x) exp(⌘T

u(x))dx = 1

rg(⌘)

Z
h(x) exp(⌘T

u(x))dx + g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = 0

) �rg(⌘)

g(⌘)
= g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = E[u(x)]

�r ln g(⌘) = E[u(x)]
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MLE for Exponential Families

From: 

we get: 

which means that  

Σu(x) is called the sufficient statistics of p.

23

g(⌘)

Z
h(x) exp(⌘T

u(x))dx = 1

rg(⌘)

Z
h(x) exp(⌘T

u(x))dx + g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = 0

) �rg(⌘)

g(⌘)
= g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = E[u(x)]

�r ln g(⌘) = E[u(x)]
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Expectation Propagation

In mean-field we minimized            . But: we can 

also minimize            . Assume q is from the 
exponential family: 

Then we have:

24

KL(qkp)
KL(pkq)

q(z) = h(z)g(⌘) exp(⌘Tu(z))

natural parameters

g(⌘)

Z
h(x) exp(⌘T

u(z))dx = 1

normalizer

KL(pkq) = �
Z

p(x) log

h(z)g(⌘) exp(⌘T
u(z))

p(x)z
z dz
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Expectation Propagation

This results in 

We can minimize this with respect to  

25

⌘

KL(pkq) = � log g(⌘)� ⌘TEp[u(x)] + const

�r log g(⌘) = Ep[u(x)]
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Expectation Propagation

This results in 

We can minimize this with respect to  

which is equivalent to  

Thus: the KL-divergence is minimal if the exp. 

sufficient statistics are the same between p and q! 

For example, if q is Gaussian: 

Then, mean and covariance of q must be the 

same as for p (moment matching) 
26

⌘

KL(pkq) = � log g(⌘)� ⌘TEp[u(x)] + const

�r log g(⌘) = Ep[u(x)]

Eq[u(x)] = Ep[u(x)]

u(x) =

✓
x

x

2

◆
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Expectation Propagation

Assume we have a factorization 

and we are interested in the posterior: 

we use an approximation  

Aim: minimize 

Idea: optimize each of the approximating factors 
in turn, assume exponential family

27

p(D,✓) =
MY

i=1

fi(✓)

p(✓ | D) =
1

p(D)

MY

i=1

fi(✓)

KL

 
1

p(D)

MY

i=1

fi(✓)
���
1

Z

MY

i=1

f̃i(✓)

!

q(✓) =
1

Z

MY

i=1

f̃i(✓)
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The EP Algorithm

• Given: a joint distribution over data and variables 

• Goal: approximate the posterior              with q 

• Initialize all approximating factors 

• Initialize the posterior approximation 

• Do until convergence: 

•choose a factor  

•remove the factor from q by division:

28

p(D,✓) =
MY

i=1

fi(✓)

f̃i(✓)

q(✓) /
Y

i

f̃i(✓)

f̃j(✓)

q\j(✓) =
q(✓)

f̃j(✓)

p(✓ | D)
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The EP Algorithm

•find         that minimizes  
 
 
 
using moment matching, including the zeroth order 
moment: 

•evaluate the new factor  

• After convergence, we have  

29

KL

✓
fj(✓)q\j(✓)

Zj

���qnew(✓)
◆

qnew

Zj =

Z
q\j(✓)fj(✓)d✓

f̃j(✓) = Zj
qnew(✓)

q\j(✓)

p(D) ⇡
Z Y

i

f̃j(✓)d✓
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Properties of EP

• There is no guarantee that the iterations will 
converge 

• This is in contrast to variational Bayes, where 
iterations do not decrease the lower bound 

• EP minimizes              where variational Bayes 
minimizes

30

KL(pkq)

KL(qkp)KL(pkq)

KL(qkp)
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Example

yellow: original distribution 

red: Laplace approximation 

green: global variation 

blue: expectation-propagation

31
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p(✓) = N (✓ | 0, bI)

The Clutter Problem

• Aim: fit a multivariate Gaussian into data in the 
presence of background clutter (also Gaussian) 

• The prior is Gaussian:

32

p(x | ✓) = (1� w)N (x | ✓, I) + wN (x | 0, aI)
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The Clutter Problem

The joint distribution for                          is 

this is a mixture of       Gaussians! This is 

intractable for large N. Instead, we approximate 
it using a spherical Gaussian: 

the factors are (unnormalized) Gaussians:

33

D = (x1, . . . ,xN )

p(D,✓) = p(✓)
NY

n=1

p(xn | ✓)

2N

f̃n(✓) = snN (✓ | mn, vnI)

q(✓) = N (✓ | m, vI) = f̃0(✓)
NY

n=1

f̃n(✓)

f̃0(✓) = p(✓)
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EP for the Clutter Problem

• First, we initialize                , i.e.  

• Iterate:  

•Remove the current estimate of           from q by 
division of Gaussians:

34

f̃n(✓) = 1 q(✓) = p(✓)

f̃n(✓)

q�n(✓) =
q(✓)

f̃n(✓)
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EP for the Clutter Problem

• First, we initialize                , i.e.  

• Iterate:  

•Remove the current estimate of           from q by 
division of Gaussians: 

•Compute the normalization constant: 

•Compute mean and variance of  

•  Update the factor

35

f̃n(✓) = 1 q(✓) = p(✓)

f̃n(✓)

q�n(✓) =
q(✓)

f̃n(✓)
q�n(✓) = N (✓ | m�n, v�nI)

Zn =

Z
q�n(✓)fn(✓)d✓

qnew = q�n(✓)fn(✓)

f̃n(✓) = Zn
qnew(✓)

q�n(✓)
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q�n(✓)

A 1D Example

• blue: true factor 

• red: approximate factor  

• green: cavity distribution   

The form of             controls the range over which 
         will be a good approximation of  

36

f̃n(✓)

fn(✓)

q�n(✓)

f̃n(✓) fn(✓)
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Summary

• Variational Inference uses approximation of 
functions so that the KL-divergence is minimal 

• In mean-field theory, factors are optimized 
sequentially by taking the expectation over all 
other variables 

• Expectation propagation minimizes the 
reverse KL-divergence of a single factor by 
moment matching; factors are in the exp. family
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