Computer Vision II:
Multiple View Geometry

Exercise 8: Direct Image Alignment

Christiane Sommer, Rui Wang

July 06, 2017

@ LTI

= TLTI

Direct Image Alignment

« = "“Direct Tracking” / “Dense Tracking” / “Dense Visual Odometry”
« ="Lucas-Kanade Tracking on SE(3)"

reference image

Camera
poseé=

new image

Slides based on slides by R. Maier 2016

= TUTI
Keypoints, Direct, Sparse, Dense

Feature-Based Direct
I | Input ‘
ot Fad M| s e R

Extract & Match

Features
(SIFT /SURF/ ...)
"I*l“ N
abstract image to feature observations keep full images (no abstraction)
Track: b\ Track:
min. reprojection error| .o £aio min. photometric error
vint distances b || | (intensity differences)
o QAN | ek || BBV SEERES LTSN
\C N e = ¢ J) {
~ Map: — = ~ Map: -
est. feature-parameters |« -=<iffad est. per-pixel depth
(3D points / normals) "“*4:; . (semi-dense depth map)|_|.

« Sparse: use a small set of selected pixels (keypoints)

» Dense: use all (valid) pixels
Slides based on slides by R. Maier 2016

@ TLTI

Sparse Keypoint-based Visual Odometry

f Extract and match
Ikeypoints

Determine relative
camera pose (R, t)
from keypoint matches

Slides based on slides by R. Maier 2016

= TLTI

Dense Direct Image Alignment

« Known pixel depth — "simulate"” RGB-D image from
different view point

* |deally: warped image = image taken from that pose:
L(t(& %)) = L(x)

 RGB-D: depth available —»
find camera motion! —

* Motion representation using |
the SE(3) Lie algebra I

* Non-linear least squares
optimization

Slides based on slides by R. Maier 2016

o . P
Minimization of photometric error; %] TI.ITI
Normally distributed residuals

2

E(/§) = Z r;(§)% = 2 (12 (z(& %)) — 11(Xi))
i i k J \ J
Ci‘)r;‘:;a sku_myc:r new ;(mage referencYe image

valid pixels

reference depth

(&, x;) warps a pixel from
reference image to new image

Slides based on slides by R. Maier 2016

= TLTI

Gauss-Newton optimization

E@ =Y n@®? =y (L(tEx)) - hx))

l l

« Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):

&1 08, == log(exp(&y) - exp($r)) # &y 08, # &5 + &

* Intuition: iteratively solve for VE(¢) = 0 by
approximating VE(¢) linearly (i.e. by approximating
E (&) quadratically)

« Using coarse-to-fine pyramid approach

= TLTI

Gauss-Newton: gradients

 Vector of residuals: r with r; = r;(0) I.e. evaluated at 0

« Matrix of gradients: J with rows J® = arai—g)
£=0
. Gradients: 259 =
af f:O
1 1 0 —=% _ Ty a?
= z z (z,y,2) ' =1 (x4, 21 (%))

» Update step: §; = (JT/)"Y/Tr and §*+D) = §; 0 &0

Slides based on slides by R. Maier 2016

= TLTI

Gauss-Newton optimization

E@ =Y n@®? =y (L(tEx)) - hx))

l l

« Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):

&1 08, == log(exp(&y) - exp($r)) # &y 08, # &5 + &

* Intuition: iteratively solve for VE(¢) = 0 by
approximating VE(¢) linearly (i.e. by approximating
E (&) quadratically)

« Using coarse-to-fine pyramid approach

= TUTI

Coarse-to-Fine

« Adapt size of the neighborhood from coarse to fine

Coarse motion

\

v

v

v

Fine motion

Slides based on slides by R. Maier 2016

= TLTI

Coarse-to-Fine

« Minimize for down-scaled image (e.g. factor 8, 4, 2, 1)
and use result as initialization for next finer level

« Elegant formulation: Downscale image and adjust K
accordingly
— Downscale by factor of 2 (e.g. 640x480 -> 320x240)

— Adjust camera matrix elements f,, f,,, ¢, and c,:

1 1 1
0 0
— O —C —_—
X X
K1) — ‘ 1 % L1L
0o —fO Z.0_Z
27y 27V 4

0 0 1

= TLTI

Final Algorithm

g(o) —0
k=0
for level=3 ... 1
compute down-scaled images & depthmaps (factor =2'¢v¢!)
compute down-scaled K (factor = 2'¢vel)
fori=1..20
compute Jacobian J, € R™*¢

compute update J;
apply update ¢(FH1) — 5. o ¢(F)
k++; maybe break early if 55 too small or if residual increased
done
done
+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm

Slides based on slides by R. Maier 2016

