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Direct Image Alignment

« = "“Direct Tracking” / “Dense Tracking” / “Dense Visual Odometry”
« ="Lucas-Kanade Tracking on SE(3)"

reference image

Camera
poseé=

new image
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Keypoints, Direct, Sparse, Dense
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abstract image to feature observations keep full images (no abstraction)
Track: b\ Track:
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(3D points / normals) "“*4:; . (semi-dense depth map)|_|.

« Sparse: use a small set of selected pixels (keypoints)

» Dense: use all (valid) pixels
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Sparse Keypoint-based Visual Odometry

f Extract and match
Ikeypoints

Determine relative
camera pose (R, t)
from keypoint matches
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Dense Direct Image Alignment

« Known pixel depth — "simulate"” RGB-D image from
different view point

* |deally: warped image = image taken from that pose:
L(t(& %)) = L(x)

 RGB-D: depth available —»
find camera motion! —

* Motion representation using |
the SE(3) Lie algebra I

* Non-linear least squares
optimization
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Minimization of photometric error; %] TI.ITI
Normally distributed residuals
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E(/§) = Z r;(§)% = 2 (12 (z(& %)) — 11(Xi))
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Ci‘)r;‘:;a sku_myc:r new ;(mage referencYe image

valid pixels

reference depth

(&, x;) warps a pixel from
reference image to new image
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Gauss-Newton optimization

E@ =Y n@®? =y (L(tEx)) - hx))

l l

« Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):

&1 08, == log(exp(&y) - exp($r)) # &y 08, # &5 + &

* Intuition: iteratively solve for VE(¢) = 0 by
approximating VE(¢) linearly (i.e. by approximating
E (&) quadratically)

« Using coarse-to-fine pyramid approach
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Gauss-Newton: gradients

 Vector of residuals: r with r; = r;(0) I.e. evaluated at 0

« Matrix of gradients: J with rows J® = arai—g)
£=0
. Gradients: 259 =
af f:O
1 1 0 —=% _ Ty a?
= z z (z,y,2) ' =1 (x4, 21 (%))

» Update step: §; = (JT/)"Y/Tr and §*+D) = §; 0 &0
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Gauss-Newton optimization

E@ =Y n@®? =y (L(tEx)) - hx))

l l

« Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):

&1 08, == log(exp(&y) - exp($r)) # &y 08, # &5 + &

* Intuition: iteratively solve for VE(¢) = 0 by
approximating VE(¢) linearly (i.e. by approximating
E (&) quadratically)

« Using coarse-to-fine pyramid approach
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Coarse-to-Fine

« Adapt size of the neighborhood from coarse to fine

Coarse motion

\

v

v

v

Fine motion
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Coarse-to-Fine

« Minimize for down-scaled image (e.g. factor 8, 4, 2, 1)
and use result as initialization for next finer level

« Elegant formulation: Downscale image and adjust K
accordingly
— Downscale by factor of 2 (e.g. 640x480 -> 320x240)

— Adjust camera matrix elements f,, f,,, ¢, and c,:
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Final Algorithm

g(o) —0
k=0
for level=3 ... 1
compute down-scaled images & depthmaps (factor =2'¢v¢! )
compute down-scaled K (factor = 2'¢vel)
fori=1..20
compute Jacobian J, € R™*¢

compute update J;
apply update ¢(FH1) — 5. o ¢(F)
k++; maybe break early if 55 too small or if residual increased
done
done
+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm
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