Computer Vision II: Multiple View Geometry

Exercise 8: Direct Image Alignment

Christiane Sommer, Rui Wang

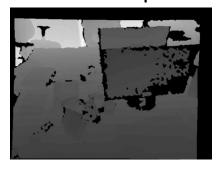
July 06, 2017

Direct Image Alignment

- = "Direct Tracking" / "Dense Tracking" / "Dense Visual Odometry"
- = "Lucas-Kanade Tracking on SE(3)"

reference image

reference depth

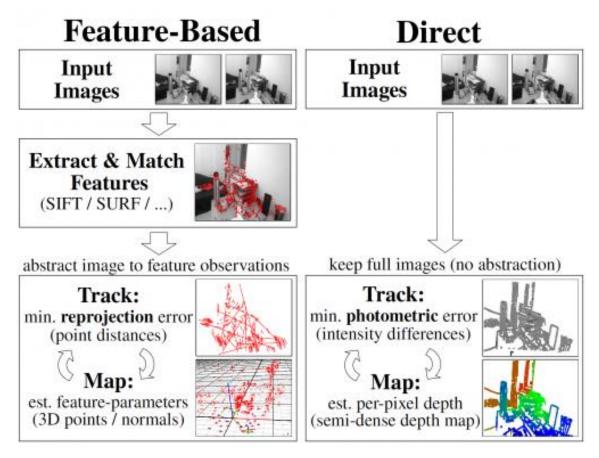


+

new image

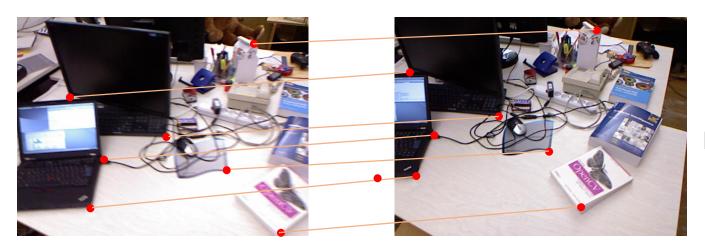
Slides based on slides by R. Maier 2016

Keypoints, Direct, Sparse, Dense

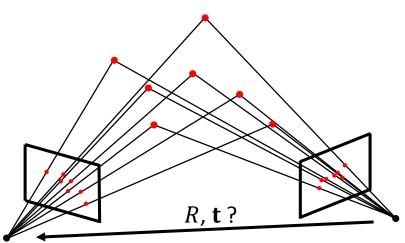


- Sparse: use a small set of selected pixels (keypoints)
- Dense: use all (valid) pixels

Sparse Keypoint-based Visual Odometry



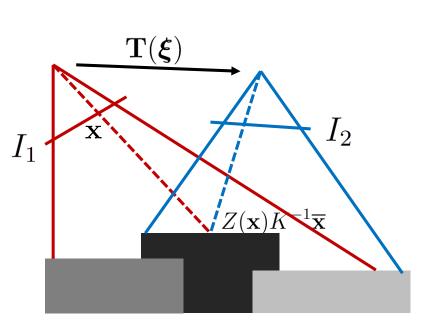
Extract and match keypoints



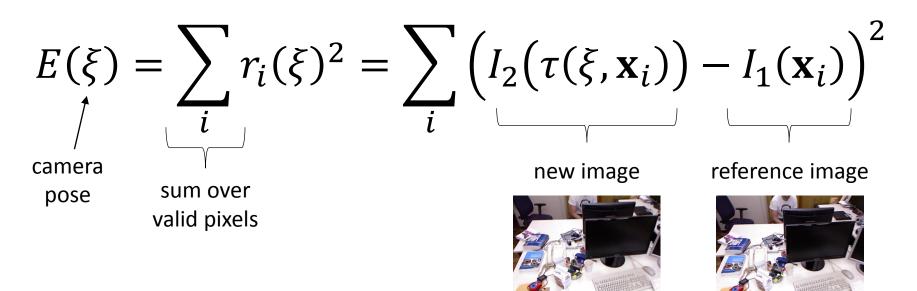
Determine relative camera pose (R, \mathbf{t}) from keypoint matches

Dense Direct Image Alignment

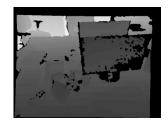
- Known pixel depth → "simulate" RGB-D image from different view point
- Ideally: warped image = image taken from that pose: $I_2(\tau(\xi, \mathbf{x}_i)) = I_1(\mathbf{x}_i)$
- RGB-D: depth available → find camera motion!
- Motion representation using the SE(3) Lie algebra
- Non-linear least squares optimization



Minimization of photometric error: Normally distributed residuals



reference depth



 $\tau(\xi, \mathbf{x}_i)$ warps a pixel from reference image to new image

Gauss-Newton optimization

$$E(\xi) = \sum_{i} r_i(\xi)^2 = \sum_{i} \left(I_2(\tau(\xi, \mathbf{x}_i)) - I_1(\mathbf{x}_i) \right)^2$$

 Solved with Gauss-Newton algorithm using leftmultiplicative increments on SE(3):

$$\xi_1 \circ \xi_2 \coloneqq \log(\exp(\xi_1) \cdot \exp(\xi_2)) \neq \xi_2 \circ \xi_1 \neq \xi_1 + \xi_2$$

- Intuition: iteratively solve for $\nabla E(\xi) = 0$ by approximating $\nabla E(\xi)$ linearly (i.e. by approximating $E(\xi)$ quadratically)
- Using coarse-to-fine pyramid approach

Gauss-Newton: gradients

- Vector of residuals: \mathbf{r} with $r_i = r_i(0)$ i.e. evaluated at 0
- Matrix of gradients: J with rows $J^{(i)} = \frac{\partial r_i(\xi)}{\partial \xi} \Big|_{\xi=0}$
- Gradients: $\frac{\partial r_i(\xi)}{\partial \xi}\Big|_{\xi=0}=$

$$= \frac{1}{z} \begin{pmatrix} I_x f_x & I_y f_y \end{pmatrix} \begin{pmatrix} 1 & 0 & -\frac{x}{z} & -\frac{xy}{z} & z + \frac{x^2}{z} & -y \\ 0 & 1 & -\frac{y}{z} & -z - \frac{y^2}{z} & \frac{xy}{z} & x \end{pmatrix} \Big|_{(x,y,z)^\top = \pi^{-1}(\mathbf{x}_i, Z_1(\mathbf{x}_i))}$$

• Update step: $\delta_{\xi} = (J^{\mathsf{T}}J)^{-1}J^{\mathsf{T}}\mathbf{r}$ and $\xi^{(k+1)} = \delta_{\xi} \circ \xi^{(k)}$

Gauss-Newton optimization

$$E(\xi) = \sum_{i} r_i(\xi)^2 = \sum_{i} \left(I_2(\tau(\xi, \mathbf{x}_i)) - I_1(\mathbf{x}_i) \right)^2$$

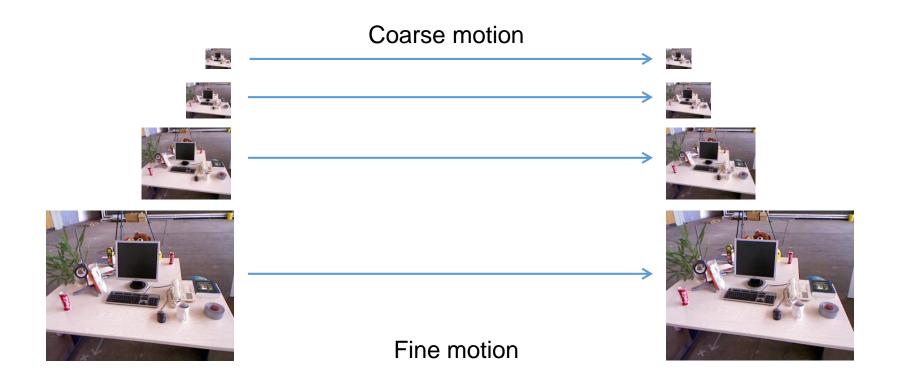
 Solved with Gauss-Newton algorithm using leftmultiplicative increments on SE(3):

$$\xi_1 \circ \xi_2 \coloneqq \log(\exp(\xi_1) \cdot \exp(\xi_2)) \neq \xi_2 \circ \xi_1 \neq \xi_1 + \xi_2$$

- Intuition: iteratively solve for $\nabla E(\xi) = 0$ by approximating $\nabla E(\xi)$ linearly (i.e. by approximating $E(\xi)$ quadratically)
- Using coarse-to-fine pyramid approach

Coarse-to-Fine

Adapt size of the neighborhood from coarse to fine



Coarse-to-Fine

- Minimize for down-scaled image (e.g. factor 8, 4, 2, 1) and use result as initialization for next finer level
- Elegant formulation: Downscale image and adjust K accordingly
 - Downscale by factor of 2 (e.g. 640x480 -> 320x240)
 - Adjust camera matrix elements f_x , f_y , c_x and c_y :

$$K^{(l+1)} = \begin{pmatrix} \frac{1}{2} f_x^{(l)} & 0 & \frac{1}{2} c_x^{(l)} - \frac{1}{4} \\ 0 & \frac{1}{2} f_y^{(l)} & \frac{1}{2} c_y^{(l)} - \frac{1}{4} \\ 0 & 0 & 1 \end{pmatrix}$$

Final Algorithm

```
\xi^{(0)} = \mathbf{0}
k = 0
for level = 3 ... 1
          compute down-scaled images & depthmaps (factor = 2^{level})
          compute down-scaled K (factor = 2^{level})
          for i = 1..20
                    compute Jacobian J_{\mathbf{r}} \in \mathbb{R}^{n \times 6}
                    compute update \delta_{\mathcal{E}}
                    apply update \xi^{(k+1)} = \delta_{\xi} \circ \xi^{(k)}
                    k++; maybe break early if \delta_{\mathcal{E}} too small or if residual increased
          done
```

done

- + robust weights (e.g. Huber), see iteratively reweighted least squares
- + Levenberg-Marquad (LM) Algorithm