Multiple View Geometry: Exercise Sheet 5
Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2017/mvg2017

Exercise: June 8th, 2017

Part I: Theory

This part of the exercises should be solved at home.

1. The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$
E(\mathbf{v})=\int_{W(\mathbf{x})} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left\|\nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v}+\partial_{t} I\left(\mathbf{x}^{\prime}, t\right)\right\|^{2} d \mathbf{x}^{\prime}
$$

Assume that the weighting function G is chosen such that $G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$ for any $\mathbf{x}^{\prime} \notin W(\mathbf{x})$.
(a) Prove that the minimizer \mathbf{b} of $E(\mathbf{v})$ can be written as

$$
\mathbf{b}=-M^{-1} \mathbf{q}
$$

where the entries of M and \mathbf{q} are given by

$$
m_{i j}=G *\left(I_{x_{i}} \cdot I_{x_{j}}\right) \quad \text { and } \quad q_{i}=G *\left(I_{x_{i}} \cdot I_{t}\right)
$$

(b) Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I\left(\mathbf{x}^{\prime}, t\right)=\alpha\left(\mathbf{x}^{\prime}, t\right) \mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u}, M is not invertible.
Explain how this observation is related to the aperture problem.
(c) Write down explicit expressions for the two components b_{1} and b_{2} of the minimizer in terms of $m_{i j}$ and q_{i}.

2. The Reconstruction Problem

The bundle adjustment (re-)projection error for N points $\mathbf{X}_{1}, \ldots, \mathbf{X}_{N}$ is

$$
E\left(R, \mathbf{T}, \mathbf{X}_{1}, \ldots, \mathbf{X}_{N}\right)=\sum_{j=1}^{N}\left(\left\|\mathbf{x}_{1}^{j}-\pi\left(\mathbf{X}_{j}\right)\right\|^{2}+\left\|\mathbf{x}_{2}^{j}-\pi\left(R \mathbf{X}_{j}+\mathbf{T}\right)\right\|^{2}\right)
$$

(a) What dimension does the space of unknown variables have if ...

- ... R is restricted to a rotation about the camera's y-axis?
- ... the camera is only rotated, not translated?
- ... the points \mathbf{X}_{j} are known to all lie on one plane?

In contrast to the projection error, the 8-point algorithm decouples the rigid body motion from the coordinates \mathbf{X}_{j}.
(b) Which constrained optimization problem does the 8-point algorithm solve? Write down a cost function $E_{8 \text {-pt }}(R, \mathbf{T})$ and according constraints using $\mathbf{x}_{1}^{j}, \mathbf{x}_{2}^{j}, R$ and \mathbf{T}.
(c) Can the 8 -point algorithm be used if ...

- ... R is restricted to a rotation about the camera's y-axis?
- ... the camera is only rotated, not translated?
- ... the points \mathbf{X}_{j} are known to all lie on one plane?

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. The Structure Tensor

In order to be able to detect corners in an image and compute optical flow, the structure tensor M shall be computed in this exercise. Write a function [M11, M12, M22] = getM(I, sigma) that computes the entries of the structure tensor M (see Theory, Ex.1(a)) for every pixel (x, y) of the image. Proceed as follows:
(a) Compute the image gradients I_{x} and I_{y} using central differences.
(b) As weighting function use a two-dimensional Gaussian Kernel with a standard deviation of $\sigma=2$ (see Exercise Sheet 1). Use a kernel size (and hence integration window size) $k=2 \cdot 2 \sigma+1$.
(c) Use the result from Theory, Ex.1(a) and the Matlab function conv2 to compute M11, M12 and M22. Why is it not necessary to compute M21?

2. Corner Detection

In this exercise you will implement the Harris corner detector. Download ex5. zip and extract its content.
(a) Fill in the first two missing parts in getHarrisCorners.m: compute the scoring function $C:=\operatorname{det}(M)-\kappa \operatorname{trace}^{2}(M)$ for each pixel (x, y) using $\kappa=0.05$.
(b) Visualize the scoring function. If you cannot see much, try to display a non-linearly transformed scoring function, e.g. $\operatorname{sign}(\mathrm{C}) \cdot|C|^{\frac{1}{4}}$.
(c) Complete getHarrisCorners.m: find all pixels (x, y) for which $C(x, y)>\theta$, and which are a local maximum of the scoring function, i.e. all four adjacent pixel have a lower score (non-maximum suppression). Use $\theta=10^{-7}$.
(d) Run getHarrisCorners for img1.png and display the found corners using the provided function drawPts.
(e) Try different values for σ. What do you observe?

3. Dense Optical Flow

In this exercise you will implement the Lucas-Kanade method to compute optical flow. To this end, complete the missing parts in getFlow.m.
(a) Write a function [M11, M12, M22, q1, q2] = getMq(I1, I2, sigma) that computes the entries of the structure tensor M as well as the vector \mathbf{q} for every pixel (x, y). The easiest way to do this is to copy getM.m and modify it accordingly.
(b) Compute the local velocity $\left(v_{x}, v_{y}\right)$ of each pixel using the formula derived in Theory, Ex.1(a). Use the results from Theory Ex.1(c) to avoid loops and thus make your code efficient.
(c) Run getFlow for the two images img1.png and img2.png and $\sigma=2$.
(d) Create a figure with three subplots. Visualize the two velocities separately using imagesc. In the third subplot, display a quiver plot of the velocities. Use help quiver if you do not know the syntax.
(e) Again, try different values for σ. What do you observe now?

