

## Multiple View Geometry: Solution Exercise Sheet 2

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang, TU Munich

https://vision.in.tum.de/teaching/ss2017/mvg2017

## Part I: Theory

1. Groups and inclusions:

Groups
(a) $S O(n)$ : special orthogonal group
(b) $O(n)$ : orthogonal group
(c) $G L(n)$ : general linear group
(d) $S L(n)$ : special linear group
(e) $S E(n)$ : special euclidean group (In particular, $S E(3)$ represents the rigid-body motions in $\mathbb{R}^{3}$ )
(f) $E(n)$ : euclidean group
(g) $A(n)$ : affine group

Inclusions
(a) $S O(n) \subset O(n) \subset G L(n)$
(b) $S E(n) \subset E(n) \subset A(n) \subset G L(n+1)$
2. $\lambda_{a}=\frac{\left(\lambda_{a} v_{a}\right)^{T} v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{T} A^{T} v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{T} A v_{b}}{\left\langle v_{a}, v_{b}\right\rangle}=\frac{v_{a}^{T}\left(\lambda_{b} v_{b}\right)}{\left\langle v_{a}, v_{b}\right\rangle}=\lambda_{b}$
3. Let $V$ be the orthonormal matrix (i.e. $V^{T}=V^{-1}$ ) given by the eigenvectors, and $\Sigma$ the diagonal matrix containing the eigenvalues:

$$
V=\left(\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad \Sigma=\left(\begin{array}{ccc}
\lambda_{1} & 0 & \ddots \\
0 & \ddots & 0 \\
\ddots & 0 & \lambda_{n}
\end{array}\right)
$$

As $V$ is a basis, we can express $x$ as a linear combination of the eigenvectors $x=V \alpha$ with $\alpha \in \mathbb{R}^{n}$, with $\sum_{i} \alpha_{i}^{2}=\alpha^{T} \alpha=x^{T} V^{T} V x=x^{T} x=1$. This gives

$$
\begin{aligned}
x^{T} A x & =x^{T} V \Sigma V^{-1} x \\
& =\alpha^{T} V^{T} V \Sigma V^{T} V \alpha \\
& =\alpha^{T} \Sigma \alpha=\sum_{i} \alpha_{i}^{2} \lambda_{i}
\end{aligned}
$$

Considering $\sum_{i} \alpha_{i}^{2}=1$, we can conclude that this expression is minimized iff only the $\alpha_{i}$ corresponding to the smallest eigenvalue(s) are non-zero. If $\lambda_{n-1} \ngtr \lambda_{n}$, there exist only two solutions ( $\alpha_{n}= \pm 1$ ), otherwise infinitely many.
For maximisation, only the the $\alpha_{i}$ corresponding to the largest eigenvalue(s) can be non-zero.
4. We show that: $\quad x \in \operatorname{kernel}(A) \Leftrightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)$.

```
\(" \Rightarrow "\) : Let \(x \in \operatorname{kernel}(A)\)
    \(A^{\top} \underbrace{A x}_{=0}=A^{T} 0=0 \quad \Rightarrow x \in \operatorname{kernel}\left(A^{\top} A\right)\)
\(" \Leftarrow ":\) Let \(x \in \operatorname{kernel}\left(A^{T} A\right)\)
    \(0=x^{T} \underbrace{A^{T} A x}_{=0}=\langle A x, A x\rangle=\|A x\|^{2} \quad \Rightarrow A x=0 \quad \Rightarrow x \in \operatorname{kernel}(A)\)
```

5. Singular Value Decomposition (SVD)
(a) $A \in \mathbb{R}^{m \times n}$ with $m \geq n, U \in \mathbb{R}^{m \times m}, S \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$
(b) Similarities and differences between SVD and EVD:
i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices $A \in \mathbb{R}^{m \times n}$ with $m \neq n$, whereas the EVD is only applicable to quadratic matrices $\left(A \in \mathbb{R}^{m \times n}\right.$ with $\left.m=n\right)$.
(c) Relationship between $U, S, V$ and the eigenvalues and eigenvectors of $A^{\top} A$ and $A A^{\top}$ :
i. the columns of $V$ are eigenvectors of $A^{\top} A$
ii. the columns of $U$ are eigenvectors of $A A^{\top}$
(d) Entries in $S$ :
i. $S$ is a diagonal matrix. The elements along the diagonal are the singular values of $A$.
ii. The number of non-zero singular values gives us the rank of the matrix $A$.
