

## Multiple View Geometry: Solution Exercise Sheet 2

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang, TU Munich https://vision.in.tum.de/teaching/ss2017/mvg2017

## **Part I: Theory**

- 1. Groups and inclusions: Groups
  - (a) SO(n): special orthogonal group
  - (b) O(n): orthogonal group
  - (c) GL(n): general linear group
  - (d) SL(n): special linear group
  - (e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions in  $\mathbb{R}^3$ )
  - (f) E(n): euclidean group
  - (g) A(n): affine group

Inclusions

- (a)  $SO(n) \subset O(n) \subset GL(n)$
- (b)  $SE(n) \subset E(n) \subset A(n) \subset GL(n+1)$

2. 
$$\lambda_a = \frac{(\lambda_a v_a)^T v_b}{\langle v_a, v_b \rangle} = \frac{v_a^T A^T v_b}{\langle v_a, v_b \rangle} = \frac{v_a^T A v_b}{\langle v_a, v_b \rangle} = \frac{v_a^T (\lambda_b v_b)}{\langle v_a, v_b \rangle} = \lambda_b$$

3. Let V be the orthonormal matrix (i.e.  $V^T = V^{-1}$ ) given by the eigenvectors, and  $\Sigma$  the diagonal matrix containing the eigenvalues:

$$V = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} \lambda_1 & 0 & \ddots \\ 0 & \ddots & 0 \\ \ddots & 0 & \lambda_n \end{pmatrix}.$$

As V is a basis, we can express x as a linear combination of the eigenvectors  $x = V\alpha$  with  $\alpha \in \mathbb{R}^n$ , with  $\sum_i \alpha_i^2 = \alpha^T \alpha = x^T V^T V x = x^T x = 1$ . This gives

$$x^{T}Ax = x^{T}V\Sigma V^{-1}x$$
$$= \alpha^{T}V^{T}V\Sigma V^{T}V\alpha$$
$$= \alpha^{T}\Sigma\alpha = \sum_{i} \alpha_{i}^{2}\lambda_{i}$$

Considering  $\sum_i \alpha_i^2 = 1$ , we can conclude that this expression is minimized iff only the  $\alpha_i$  corresponding to the smallest eigenvalue(s) are non-zero. If  $\lambda_{n-1} \ge \lambda_n$ , there exist only two solutions  $(\alpha_n = \pm 1)$ , otherwise infinitely many.

For maximisation, only the the  $\alpha_i$  corresponding to the largest eigenvalue(s) can be non-zero.

4. We show that:  $x \in \text{kernel}(A) \Leftrightarrow x \in \text{kernel}(A^{\top}A)$ .

- 5. Singular Value Decomposition (SVD)
  - (a)  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n, U \in \mathbb{R}^{m \times m}, S \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}$
  - (b) Similarities and differences between SVD and EVD:
    - i. Both are matrix diagonalization techniques.
    - ii. The SVD can be applied to matrices  $A \in \mathbb{R}^{m \times n}$  with  $m \neq n$ , whereas the EVD is only applicable to quadratic matrices ( $A \in \mathbb{R}^{m \times n}$  with m = n).
  - (c) Relationship between U, S, V and the eigenvalues and eigenvectors of  $A^{\top}A$  and  $AA^{\top}$ :
    - i. the columns of V are eigenvectors of  $A^{\top}A$
    - ii. the columns of U are eigenvectors of  $AA^\top$
  - (d) Entries in S:
    - i. S is a diagonal matrix. The elements along the diagonal are the *singular values* of A.
    - ii. The number of non-zero singular values gives us the *rank* of the matrix A.