Multiple View Geometry: Solution Exercise Sheet 7

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang, TU Munich http://vision.in.tum.de/teaching/ss2017/mvg2017

Part I: Theory

1. (a) l is coimage of L, and therefore l is normal vector to the plane that is determined by the camera position and L.

$$\Rightarrow \begin{array}{l} l^T x_1 = 0 \\ l^T x_2 = 0. \end{array}$$
$$\Rightarrow l \sim x_1 \times x_2 = \hat{x_1} x_2.$$

 l_1 and l_2 are normal vectors to the planes through camera position and L_1 , L_2 respectively.

$$\Rightarrow \begin{array}{l} l_1^T x = 0 \\ l_2^T x = 0 \end{array}$$

$$\Rightarrow x \sim l_1 \times l_2 = \hat{l_1} l_2.$$

(b) i.
$$l_1 \sim \hat{x}u$$
:

x is in the preimage of L_1 . $\Rightarrow l_1^\top x = 0$.

$$\exists \text{ point } u \neq p \text{ in } L_1. \Rightarrow l_1^\top u = 0$$

$$\Rightarrow l_1 \sim \hat{x}u.$$

ii. $l_2 \sim \hat{x}v$: analog to i.

iii.
$$x_1 \sim \hat{l}r$$
:

 x_1 is in the preimage of $L. \Rightarrow x_1^\top l = 0$

 \exists a line L' through p_1 with coimage $r \neq l$. $\Rightarrow x_1^{\top} r = 0$.

$$\Rightarrow x_1 \sim \hat{l}r.$$

iv. $x_2 \sim \hat{l}s$: analog to iii.

$$2. \quad \operatorname{rank}\left(\begin{array}{c} \hat{x_1}\Pi_1 \\ \hat{x_2}\Pi_2 \end{array}\right) \leqq 3$$

$$\Rightarrow \exists X \in \mathbb{R}^4 \backslash \{0\} \text{ with } \left(\begin{array}{c} \hat{x_1} \Pi_1 \\ \hat{x_2} \Pi_2 \end{array} \right) X = 0.$$

$$\Rightarrow \hat{x_1}\Pi_1 X = 0 \land \hat{x_2}\Pi_2 X = 0,$$

$$\Rightarrow x_1 \times \Pi_1 X = 0 \quad \land \quad x_2 \times \Pi_2 X = 0.$$

 $\Rightarrow x_1$ and $\Pi_1 X$ are linearly dependent; and x_2 and $\Pi_2 X$ are linearly dependent.

$$\Rightarrow \exists \lambda_1, \lambda_2 \in \mathbb{R} \text{ with } \Pi_1 X = \lambda_1 x_1 \quad \land \quad \Pi_2 X = \lambda_2 x_2$$

 $\Rightarrow x_1$ and x_2 are projections of X.

3.
$$\exists \lambda \in \mathbb{R} : [R', T'] = \lambda [R, T]H = \lambda [R, T] \begin{bmatrix} I & 0 \\ v^{\top} & v_4 \end{bmatrix} = \lambda [R + Tv^{\top}, Tv_4]$$

$$E' = \hat{T}'R'$$

$$= (\widehat{\lambda v_4 T}) \cdot (\lambda (R + Tv^\top))$$

$$= \lambda^2 v_4 \widehat{T} (R + Tv^\top)$$

$$= \lambda^2 v_4 \widehat{T} R + \lambda^2 v_4 \underbrace{\widehat{T} T}_{=0} v^\top$$

$$= \lambda^2 v_4 \hat{T} R$$

$$= \lambda^2 v_4 E \quad \text{with } \lambda^2 v_4 \in \mathbb{R}$$

$$\Rightarrow E' \sim E$$