

Multiple View Geometry: Solution Exercise Sheet 7

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang, TU Munich
http://vision.in.tum.de/teaching/ss2017/mvg2017

Part I: Theory

1. (a) l is coimage of L, and therefore l is normal vector to the plane that is determined by the camera position and L.

$$
\begin{aligned}
& \Rightarrow \begin{array}{l}
l^{T} x_{1}=0 \\
l^{T} x_{2}=0 .
\end{array} \\
& \Rightarrow l \sim x_{1} \times x_{2}=\hat{x_{1}} x_{2} .
\end{aligned}
$$

l_{1} and l_{2} are normal vectors to the planes through camera position and L_{1}, L_{2} respectively.

$$
\begin{gathered}
\Rightarrow \begin{array}{c}
l_{1}^{T} x=0 \\
l_{2}^{T} x=0
\end{array} \\
\Rightarrow x \sim l_{1} \times l_{2}=\hat{l_{1}} l_{2} .
\end{gathered}
$$

(b) i. $l_{1} \sim \hat{x} u$:
x is in the preimage of $L_{1} . \Rightarrow l_{1}^{\top} x=0$.
\exists point $u \neq p$ in $L_{1} . \Rightarrow l_{1}^{\top} u=0$
$\Rightarrow l_{1} \sim \hat{x} u$.
ii. $l_{2} \sim \hat{x} v$: analog to i .
iii. $x_{1} \sim \hat{l} r$:
x_{1} is in the preimage of $L . \Rightarrow x_{1}^{\top} l=0$
\exists a line L^{\prime} through p_{1} with coimage $r \neq l . \Rightarrow x_{1}^{\top} r=0$.
$\Rightarrow x_{1} \sim \hat{l} r$.
iv. $x_{2} \sim \hat{l} s:$ analog to iii.
2. $\quad \operatorname{rank}\binom{\hat{x_{1}} \Pi_{1}}{\hat{x_{2}} \Pi_{2}} \leqq 3$
$\Rightarrow \exists X \in \mathbb{R}^{4} \backslash\{0\}$ with $\binom{\hat{x_{1}} \Pi_{1}}{\hat{x_{2}} \Pi_{2}} X=0$.
$\Rightarrow \hat{x_{1}} \Pi_{1} X=0 \quad \wedge \hat{x_{2}} \Pi_{2} X=0$,
$\Rightarrow x_{1} \times \Pi_{1} X=0 \wedge x_{2} \times \Pi_{2} X=0$.
$\Rightarrow x_{1}$ and $\Pi_{1} X$ are linearly dependent; and x_{2} and $\Pi_{2} X$ are linearly dependent.
$\Rightarrow \exists \lambda_{1}, \lambda_{2} \in \mathbb{R}$ with $\Pi_{1} X=\lambda_{1} x_{1} \wedge \Pi_{2} X=\lambda_{2} x_{2}$
$\Rightarrow x_{1}$ and x_{2} are projections of X.
3. $\exists \lambda \in \mathbb{R}:\left[R^{\prime}, T^{\prime}\right]=\lambda[R, T] H=\lambda[R, T]\left[\begin{array}{cc}I & 0 \\ v^{\top} & v_{4}\end{array}\right]=\lambda\left[R+T v^{\top}, T v_{4}\right]$

$$
\begin{aligned}
E^{\prime} & =\hat{T}^{\prime} R^{\prime} \\
& =\left(\widehat{\lambda v_{4} T}\right) \cdot\left(\lambda\left(R+T v^{\top}\right)\right) \\
& =\lambda^{2} v_{4} \hat{T}\left(R+T v^{\top}\right) \\
& =\lambda^{2} v_{4} \hat{T} R+\lambda^{2} v_{4} \underbrace{\hat{T} T}_{=0} v^{\top} \\
& =\lambda^{2} v_{4} \hat{T} R \\
& =\lambda^{2} v_{4} E \text { with } \lambda^{2} v_{4} \in \mathbb{R}
\end{aligned}
$$

$$
\Rightarrow E^{\prime} \sim E
$$

