Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2017/mvg2017

Exercise: June 8th, 2017

Part I: Theory

1. The Lucas-Kanade method

(a) Prove that the minimizer b of $E(\mathrm{v})$ can be written as

$$
\mathbf{b}=-M^{-1} \mathbf{q}
$$

where the entries of M and \mathbf{q} are given by

$$
m_{i j}=G *\left(I_{x_{i}} \cdot I_{x_{j}}\right) \quad \text { and } \quad q_{i}=G *\left(I_{x_{i}} \cdot I_{t}\right)
$$

We start by expanding the squared term in the energy $E(\mathbf{v})$. Since $G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$ for all $\mathbf{x}^{\prime} \in W(\mathbf{x})$, we replace the integration region by \mathbb{R}^{2}.

$$
\begin{aligned}
E(\mathbf{v})= & \int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left(\nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v}\right)^{2} d \mathbf{x}^{\prime}+\int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right) 2 \nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v} \partial_{t} I\left(\mathbf{x}^{\prime}, t\right) d \mathbf{x}^{\prime}+ \\
& +\int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\left(\partial_{t} I\left(\mathbf{x}^{\prime}, t\right)\right)^{2} d \mathbf{x}^{\prime}
\end{aligned}
$$

Now, for each term in the sum we take the derivative (gradient) with respect to \mathbf{v} :

$$
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{~d} \mathbf{v}}= & \int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right) 2 \nabla I\left(\mathbf{x}^{\prime}, t\right)\left(\nabla I\left(\mathbf{x}^{\prime}, t\right)^{\top} \mathbf{v}\right) d \mathbf{x}^{\prime}+ \\
& +\int_{\mathbb{R}^{2}} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right) 2 \nabla I\left(\mathbf{x}^{\prime}, t\right) \partial_{t} I\left(\mathbf{x}^{\prime}, t\right) d \mathbf{x}^{\prime}+0= \\
= & 2\left(G *\left(\nabla I \nabla I^{\top}\right)\right) \mathbf{v}+2\left(G *\left(\nabla I \partial_{t} I\right)\right)=: 2 M \mathbf{v}+2 \mathbf{q}
\end{aligned}
$$

where M is defined as $G *\left(\nabla I \nabla I^{\top}\right)$ and \mathbf{q} as $G *\left(\nabla I \partial_{t} I\right)$. We further know $\nabla I \nabla I^{\top}$ and $\nabla I \partial_{t} I$:

$$
\nabla I \nabla I^{\top}=\binom{I_{x}}{I_{y}}\left(\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right)=\left(\begin{array}{cc}
\left(I_{x}\right)^{2} & I_{x} I_{y} \\
I_{x} I_{y} & \left(I_{y}\right)^{2}
\end{array}\right) \quad \text { and } \quad \nabla I \partial_{t} I=\binom{I_{x} I_{t}}{I_{y} I_{t}}
$$

which proves that the entries of M and \mathbf{q} are as stated. Since we want to find a minimizer \mathbf{b} of $E(\mathbf{v})$, we require

$$
\left.\frac{\mathrm{d} E(\mathbf{v})}{\mathrm{d} \mathbf{v}}\right|_{\mathbf{v}=\mathbf{b}}=0 \quad \Rightarrow \quad 2 M \mathbf{b}+2 \mathbf{q}=0 \quad \Rightarrow \quad \mathbf{b}=-M^{-1} \mathbf{q}
$$

(b) Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I\left(\mathbf{x}^{\prime}, t\right)=\alpha\left(\mathbf{x}^{\prime}, t\right) \mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u}, M is not invertible.
\mathbf{u} does not depend on \mathbf{x}^{\prime}, so it can be pulled out of the convolution integral. Thus,
$M=G *\left(\nabla I \nabla I^{\top}\right)=\left(G * \alpha^{2}\right) \mathbf{u} \mathbf{u}^{\top} \Rightarrow \operatorname{det} M=\left(G * \alpha^{2}\right)^{2}\left(u_{1}^{2} u_{2}^{2}-\left(u_{1} u_{2}\right)^{2}\right)=0$.

Explain how this observation is related to the aperture problem.
The aperture problem states that it is impossible to determine the motion orthogonal to the gradient direction in regions with constant gradient direction,. M not being invertible means that there is no unique solution \mathbf{b}, which is the mathematical formulation of "the motion cannot be determined".
(c) Write down explicit expressions for the two components b_{1} and b_{2} of the minimizer in terms of $m_{i j}$ and q_{i}.

$$
\begin{aligned}
\mathbf{b} & =-M^{-1} \mathbf{q} \quad \text { where } \quad M^{-1}=\frac{1}{\operatorname{det} M}\left(\begin{array}{cc}
m_{22} & -m_{12} \\
-m_{12} & m_{11}
\end{array}\right) \\
\Rightarrow\binom{b_{1}}{b_{2}} & =-\frac{1}{m_{11} m_{22}-m_{12}^{2}}\left(\begin{array}{cc}
m_{22} & -m_{12} \\
-m_{12} & m_{11}
\end{array}\right)\binom{q_{1}}{q_{2}}=\binom{\frac{m_{12} q_{2}-m_{22} q_{1}}{m_{11} m_{22}-m_{12}^{2}}}{\frac{m_{12} q_{1}-m_{11} q_{2}}{m_{11} m_{22}-m_{12}^{2}}}
\end{aligned}
$$

2. The Reconstruction Problem

The bundle adjustment (re-)projection error for N points $\mathbf{X}_{1}, \ldots, \mathbf{X}_{N}$ is

$$
E\left(R, \mathbf{T}, \mathbf{X}_{1}, \ldots, \mathbf{X}_{N}\right)=\sum_{j=1}^{N}\left(\left\|\mathbf{x}_{1}^{j}-\pi\left(\mathbf{X}_{j}\right)\right\|^{2}+\left\|\mathbf{x}_{2}^{j}-\pi\left(R \mathbf{X}_{j}+\mathbf{T}\right)\right\|^{2}\right)
$$

(a) What dimension does the space of unknown variables have if ...

- ... R is restricted to a rotation about the camera's y-axis? $4+3 N$
- ... the camera is only rotated, not translated? $3+3 N$.
- ... the points \mathbf{X}_{j} are known to all lie on one plane? $9+2 N$.

In contrast to the projection error, the 8-point algorithm decouples the rigid body motion from the coordinates \mathbf{X}_{j}.
(b) Which constrained optimization problem does the 8-point algorithm solve? Write down a cost function $E_{8-\mathrm{pt}}(R, \mathbf{T})$ and according constraints using $\mathbf{x}_{1}^{j}, \mathbf{x}_{2}^{j}, R$ and \mathbf{T}.

$$
E_{8-\mathrm{pt}}(R, \mathbf{T})=\sum_{j=1}^{N}\left(\left(\mathbf{x}_{2}^{j}\right)^{\top}\left(\mathbf{T} \times R \mathbf{x}_{1}^{j}\right)\right)^{2} \quad \text { with } \quad\|\mathbf{T}\|=1
$$

(c) Can the 8-point algorithm be used if ..

- ... R is restricted to a rotation about the camera's y-axis? Yes.
- ... the camera is only rotated, not translated? No.
-.. the points \mathbf{X}_{j} are known to all lie on one plane? No.

