Multiple View Geometry: Exercise Sheet 8

Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2017/mvg2017

Exercise: July 6th, 2017

Part I: Theory

1. Image Warping
(a) Look at the warping function 7(&,x) in Eq. (9). What do 7(£,x) and () look like at

£E=0?
For £ = 0, we have

T(9(0),p) = T((1ds,0),p) =1d3p+0=p.
Thus, 7(0,x) becomes
7(0,x) = (7T_1(X, Zl(x))) =x,
where the last equality follows from inserting the formulas for 7 and 7—!. Finally,
ri(0) = Iy(7(0,%;)) — I1(x;) = T2(x;) — [1(x;) -

(b) Prove that the derivative of ;(§) w.r.t. £ at{ = 0 is
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To this end, apply the chain rule multiple times and use the following identity:
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= (Id3 —p) € R¥*C.

Since I;(x;) does not depend on &, we only need to look at the first term in 7;(§). Itis a
composition of the functions I, m and T'. Applying the chain rule gives
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Now, we know that T'(¢(0), p) = p, so we can write
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p=T(g(0),7 ! (xi,Z1(x:)))
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The second and third term are
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Performing the matrix multiplication and using

7T(p) =T (7T_1(X,L', Zl(Xl))) =X;
(see (a)) as well as

(VIQ(Xi))T (Jl(.)m 2,) = (Ix(xz)f:c Iy(xi)fy)

leads to the desired result.

2. Image Pyramids
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How does the camera matrlx ]x change from level [ to [ + 1? Write down fl
(I+1) (/) O]

and ¢y ' in terms of f,, . _]‘U and ¢;”.

Looking at how each pixel coordlnate transforms from one image level [ to the next, [ + 1, we

have
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Plugging into the relations ) = L K(OX and x(*+1) = L K(+DX results in
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3. Optimization for Normally Distributed p(r;)

(a) Confirm that a normally distributed p(r;) with a uniform prior on the camera motion leads
to normal least squares minimization. To this end, insert

p(ril€) = p(r;) = Aexp (;Z)

into Eq. (15) (use p(§) = const there) and show that

Emap = arg minz ri(€)%.
<

S .
2

2 2
) =) = dexp (= 15) = —logp(nle) = —tog A+ 7

Inserting into Eq. (15) gives
1
Emap = argmﬁin (NlOgA + ) z@:rz(fy - IOgP(g)) = argmginzi:ri(f)Q )

since —N log A and — log p(§) are just constant shifts and 0—12 is only a scaling, and none
of them changes the argmin.



(b) Explicitly show that the weights

1 dlogp(r;)

w\r;) =
( l) r; 07'7;

are constant for normally distributed p(7;).
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(c) Show that in the case of normally distributed p(r;) the update step A can be computed as
—1
A¢ = — (JTJ> JTr(0) .

Eq. (21) reads
JTWJIAE = —J " Wr(0),

with W a diagonal matrix with constant diagonal entries W;; = w(r;) = — 5.

2 2 2
= W=-5d = _—2JTJA§:—2JTI'(0) = claim.
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