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Part I: Theory

1. Image Warping

(a) Look at the warping function τ(ξ,x) in Eq. (9). What do τ(ξ,x) and ri(ξ) look like at
ξ = 0?
For ξ = 0, we have

T (g(0),p) = T ((Id3,0),p) = Id3p + 0 = p .

Thus, τ(0,x) becomes

τ(0,x) = π
(
π−1(x, Z1(x))

)
= x ,

where the last equality follows from inserting the formulas for π and π−1. Finally,

ri(0) = I2(τ(0,xi))− I1(xi) = I2(xi)− I1(xi) .

(b) Prove that the derivative of ri(ξ) w.r.t. ξ at ξ = 0 is

∂ri(ξ)

∂ξ

∣∣∣∣
ξ=0

=
1

z

(
Ixfx Iyfy

)(1 0 −x
z −xy

z z + x2

z −y
0 1 −y

z −z − y2

z
xy
z x

)∣∣∣∣∣
(x,y,z)>=π−1(xi,Z1(xi))

To this end, apply the chain rule multiple times and use the following identity:

∂T (g(ξ),p)

∂ξ

∣∣∣∣
ξ=0

=
(
Id3 −p̂

)
∈ R3×6 .

Since I1(xi) does not depend on ξ, we only need to look at the first term in ri(ξ). It is a
composition of the functions I2, π and T . Applying the chain rule gives

∂ri(ξ)

∂ξ

∣∣∣∣
ξ=0

=
∂I2(y)

∂y

∣∣∣∣
y=π(T (g(0),π−1(xi,Z1(xi))))

· ∂π(p)

∂p

∣∣∣∣
p=T (g(0),π−1(xi,Z1(xi)))

·

· ∂T (g(ξ), π−1(xi, Z1(xi)))

∂ξ

∣∣∣∣
ξ=0

.

Now, we know that T (g(0),p) = p, so we can write

∂ri(ξ)

∂ξ

∣∣∣∣
ξ=0

=

[
(∇I2 (π(p)))> · ∂π(p)

∂p
·
(
Id3 −p̂

)]∣∣∣∣
p=π−1(xi,Z1(xi))
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The second and third term are

∂π(p)

∂p
=

 ∂
∂x

(
fxx
z

)
∂
∂y

(
fxx
z

)
∂
∂z

(
fxx
z

)
∂
∂x

(
fyy
z

)
∂
∂y

(
fyy
z

)
∂
∂z

(
fyy
z

) =
1

z

(
fx 0
0 fy

)(
1 0 −x

z
0 1 −y

z

)

(
Id3 −p̂

)
=

1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0


Performing the matrix multiplication and using

π(p) = π
(
π−1(xi, Z1(xi))

)
= xi

(see (a)) as well as

(∇I2(xi))>
(
fx 0
0 fy

)
=
(
Ix(xi)fx Iy(xi)fy

)
leads to the desired result.

2. Image Pyramids

How does the camera matrix K change from level l to l + 1? Write down f (l+1)
x , f (l+1)

y , c(l+1)
x

and c(l+1)
y in terms of f (l)x , f (l)y , c(l)x and c(l)y .

Looking at how each pixel coordinate transforms from one image level l to the next, l + 1, we
have

2x(l+1) + 1
2 = x(l) ⇒ x(l+1) = 1

2x
(l) − 1

4 .

Plugging into the relations x̄(l) = 1
ZK

(l)X and x̄(l+1) = 1
ZK

(l+1)X results in

f (l+1)
x = 1

2f
(l)
x , f (l+1)

y = 1
2f

(l)
y , c(l+1)

x = 1
2c

(l)
x − 1

4 , c(l+1)
y = 1

2c
(l)
y − 1

4 .

3. Optimization for Normally Distributed p(ri)

(a) Confirm that a normally distributed p(ri) with a uniform prior on the camera motion leads
to normal least squares minimization. To this end, insert

p(ri|ξ) = p(ri) = A exp

(
− r

2
i

σ2

)
into Eq. (15) (use p(ξ) = const there) and show that

ξMAP = arg min
ξ

∑
i

ri(ξ)
2 .

p(ri|ξ) = p(ri) = A exp

(
− r

2
i

σ2

)
⇒ − log p(ri|ξ) = − logA+

r2i
σ2

Inserting into Eq. (15) gives

ξMAP = arg min
ξ

(
−N logA+

1

σ2

∑
i

ri(ξ)
2 − log p(ξ)

)
= arg min

ξ

∑
i

ri(ξ)
2 ,

since −N logA and − log p(ξ) are just constant shifts and 1
σ2 is only a scaling, and none

of them changes the argmin.
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(b) Explicitly show that the weights

w(ri) =
1

ri

∂ log p(ri)

∂ri

are constant for normally distributed p(ri).

w(ri) =
1

ri

∂ log p(ri)

∂ri
=

1

ri

∂
(

logA− ri(ξ)
2

σ2

)
∂ri

=
1

ri

(
0− 2ri

σ2

)
= − 2

σ2
= const(ri)

(c) Show that in the case of normally distributed p(ri) the update step ∆ξ can be computed as

∆ξ = −
(
J>J

)−1
J>r(0) .

Eq. (21) reads
J>WJ∆ξ = −J>Wr(0) ,

with W a diagonal matrix with constant diagonal entries Wii = w(ri) = − 2
σ2 .

⇒ W = − 2

σ2
Id ⇒ − 2

σ2
J>J∆ξ =

2

σ2
J>r(0) ⇒ claim .
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