Multiple View Geometry: Exercise Sheet 8
Prof. Dr. Daniel Cremers, Christiane Sommer, Rui Wang
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2017/mvg2017

Exercise: July 6th, 2017

Part I: Theory

1. Image Warping

(a) Look at the warping function $\tau(\xi, \mathbf{x})$ in Eq. (9). What do $\tau(\xi, \mathbf{x})$ and $r_{i}(\xi)$ look like at $\xi=0$?
For $\xi=\mathbf{0}$, we have

$$
T(g(\mathbf{0}), \mathbf{p})=T\left(\left(\operatorname{Id}_{3}, \mathbf{0}\right), \mathbf{p}\right)=\operatorname{Id}_{3} \mathbf{p}+\mathbf{0}=\mathbf{p}
$$

Thus, $\tau(\mathbf{0}, \mathbf{x})$ becomes

$$
\tau(\mathbf{0}, \mathbf{x})=\pi\left(\pi^{-1}\left(\mathbf{x}, Z_{1}(\mathbf{x})\right)\right)=\mathbf{x}
$$

where the last equality follows from inserting the formulas for π and π^{-1}. Finally,

$$
r_{i}(\mathbf{0})=I_{2}\left(\tau\left(\mathbf{0}, \mathbf{x}_{i}\right)\right)-I_{1}\left(\mathbf{x}_{i}\right)=I_{2}\left(\mathbf{x}_{i}\right)-I_{1}\left(\mathbf{x}_{i}\right) .
$$

(b) Prove that the derivative of $r_{i}(\xi)$ w.r.t. ξ at $\xi=0$ is

$$
\left.\frac{\partial r_{i}(\xi)}{\partial \xi}\right|_{\xi=0}=\left.\frac{1}{z}\left(\begin{array}{lll}
I_{x} f_{x} & I_{y} f_{y}
\end{array}\right)\left(\begin{array}{cccccc}
1 & 0 & -\frac{x}{z} & -\frac{x y}{z} & z+\frac{x^{2}}{z} & -y \\
0 & 1 & -\frac{y}{z} & -z-\frac{y^{2}}{z} & \frac{x y}{z} & x
\end{array}\right)\right|_{(x, y, z)^{\top}=\pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)}
$$

To this end, apply the chain rule multiple times and use the following identity:

$$
\left.\frac{\partial T(g(\xi), \mathbf{p})}{\partial \xi}\right|_{\xi=0}=\left(\operatorname{Id}_{3} \quad-\hat{\mathbf{p}}\right) \in \mathbb{R}^{3 \times 6}
$$

Since $I_{1}\left(\mathbf{x}_{i}\right)$ does not depend on ξ, we only need to look at the first term in $r_{i}(\xi)$. It is a composition of the functions I_{2}, π and T. Applying the chain rule gives

$$
\begin{aligned}
\left.\frac{\partial r_{i}(\xi)}{\partial \xi}\right|_{\xi=\mathbf{0}}= & \left.\left.\frac{\partial I_{2}(\mathbf{y})}{\partial \mathbf{y}}\right|_{\mathbf{y}=\pi\left(T\left(g(\mathbf{0}), \pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)\right)\right)} \cdot \frac{\partial \pi(\mathbf{p})}{\partial \mathbf{p}}\right|_{\mathbf{p}=T\left(g(\mathbf{0}), \pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)\right)} \\
& \left.\cdot \frac{\partial T\left(g(\xi), \pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)\right)}{\partial \xi}\right|_{\xi=\mathbf{0}}
\end{aligned}
$$

Now, we know that $T(g(\mathbf{0}), \mathbf{p})=\mathbf{p}$, so we can write

$$
\left.\frac{\partial r_{i}(\xi)}{\partial \xi}\right|_{\xi=\mathbf{0}}=\left.\left[\left(\nabla I_{2}(\pi(\mathbf{p}))\right)^{\top} \cdot \frac{\partial \pi(\mathbf{p})}{\partial \mathbf{p}} \cdot\left(\begin{array}{ll}
\operatorname{Id}_{3} & -\hat{\mathbf{p}}
\end{array}\right)\right]\right|_{\mathbf{p}=\pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)}
$$

The second and third term are

$$
\begin{aligned}
& \frac{\partial \pi(\mathbf{p})}{\partial \mathbf{p}}=\left(\begin{array}{ccc}
\frac{\partial}{\partial x}\left(\frac{f_{x} x}{z}\right. & \frac{\partial}{\partial y}\left(\frac{f_{x} x}{z}\right. \\
\frac{\partial}{\partial x}\left(\frac{f_{y} y}{z}\right.
\end{array}\right) \frac{\partial}{\partial z}\left(\frac{\partial}{\partial y}\left(\frac{f_{y} x}{z}\right), ~\left(\frac{\partial}{z z}\right)\left(\frac{f_{y} y}{z}\right) .\right)=\frac{1}{z}\left(\begin{array}{cc}
f_{x} & 0 \\
0 & f_{y}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -\frac{x}{z} \\
0 & 1 & -\frac{y}{z}
\end{array}\right) \\
& \left(\begin{array}{ll}
\mathrm{Id}_{3} & -\hat{\mathbf{p}}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & z & -y \\
0 & 1 & 0 & -z & 0 & x \\
0 & 0 & 1 & y & -x & 0
\end{array}\right)
\end{aligned}
$$

Performing the matrix multiplication and using

$$
\pi(\mathbf{p})=\pi\left(\pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)\right)=\mathbf{x}_{i}
$$

(see (a)) as well as

$$
\left(\nabla I_{2}\left(\mathbf{x}_{i}\right)\right)^{\top}\left(\begin{array}{cc}
f_{x} & 0 \\
0 & f_{y}
\end{array}\right)=\left(\begin{array}{ll}
I_{x}\left(\mathbf{x}_{i}\right) f_{x} & I_{y}\left(\mathbf{x}_{i}\right) f_{y}
\end{array}\right)
$$

leads to the desired result.

2. Image Pyramids

How does the camera matrix K change from level l to $l+1$? Write down $f_{x}^{(l+1)}, f_{y}^{(l+1)}, c_{x}^{(l+1)}$ and $c_{y}^{(l+1)}$ in terms of $f_{x}^{(l)}, f_{y}^{(l)}, c_{x}^{(l)}$ and $c_{y}^{(l)}$.
Looking at how each pixel coordinate transforms from one image level l to the next, $l+1$, we have

$$
2 \mathbf{x}^{(l+1)}+\frac{1}{2}=\mathbf{x}^{(l)} \quad \Rightarrow \quad \mathbf{x}^{(l+1)}=\frac{1}{2} \mathbf{x}^{(l)}-\frac{1}{4} .
$$

Plugging into the relations $\overline{\mathbf{x}}^{(l)}=\frac{1}{Z} K^{(l)} \mathbf{X}$ and $\overline{\mathbf{x}}^{(l+1)}=\frac{1}{Z} K^{(l+1)} \mathbf{X}$ results in

$$
f_{x}^{(l+1)}=\frac{1}{2} f_{x}^{(l)}, \quad f_{y}^{(l+1)}=\frac{1}{2} f_{y}^{(l)}, \quad c_{x}^{(l+1)}=\frac{1}{2} c_{x}^{(l)}-\frac{1}{4}, \quad c_{y}^{(l+1)}=\frac{1}{2} c_{y}^{(l)}-\frac{1}{4} .
$$

3. Optimization for Normally Distributed $p\left(r_{i}\right)$

(a) Confirm that a normally distributed $p\left(r_{i}\right)$ with a uniform prior on the camera motion leads to normal least squares minimization. To this end, insert

$$
p\left(r_{i} \mid \xi\right)=p\left(r_{i}\right)=A \exp \left(-\frac{r_{i}^{2}}{\sigma^{2}}\right)
$$

into Eq. (15) (use $p(\xi)=$ const there) and show that

$$
\begin{gathered}
\xi_{\mathrm{MAP}}=\arg \min _{\xi} \sum_{i} r_{i}(\xi)^{2} \\
p\left(r_{i} \mid \xi\right)=p\left(r_{i}\right)=A \exp \left(-\frac{r_{i}^{2}}{\sigma^{2}}\right) \Rightarrow-\log p\left(r_{i} \mid \xi\right)=-\log A+\frac{r_{i}^{2}}{\sigma^{2}}
\end{gathered}
$$

Inserting into Eq. (15) gives

$$
\xi_{\mathrm{MAP}}=\arg \min _{\xi}\left(-N \log A+\frac{1}{\sigma^{2}} \sum_{i} r_{i}(\xi)^{2}-\log p(\xi)\right)=\arg \min _{\xi} \sum_{i} r_{i}(\xi)^{2},
$$

since $-N \log A$ and $-\log p(\xi)$ are just constant shifts and $\frac{1}{\sigma^{2}}$ is only a scaling, and none of them changes the argmin.
(b) Explicitly show that the weights

$$
w\left(r_{i}\right)=\frac{1}{r_{i}} \frac{\partial \log p\left(r_{i}\right)}{\partial r_{i}}
$$

are constant for normally distributed $p\left(r_{i}\right)$.

$$
w\left(r_{i}\right)=\frac{1}{r_{i}} \frac{\partial \log p\left(r_{i}\right)}{\partial r_{i}}=\frac{1}{r_{i}} \frac{\partial\left(\log A-\frac{r_{i}(\xi)^{2}}{\sigma^{2}}\right)}{\partial r_{i}}=\frac{1}{r_{i}}\left(0-\frac{2 r_{i}}{\sigma^{2}}\right)=-\frac{2}{\sigma^{2}}=\operatorname{const}\left(r_{i}\right)
$$

(c) Show that in the case of normally distributed $p\left(r_{i}\right)$ the update step $\Delta \xi$ can be computed as

$$
\Delta \xi=-\left(J^{\top} J\right)^{-1} J^{\top} \mathbf{r}(\mathbf{0})
$$

Eq. (21) reads

$$
J^{\top} W J \Delta \xi=-J^{\top} W \mathbf{r}(\mathbf{0})
$$

with W a diagonal matrix with constant diagonal entries $W_{i i}=w\left(r_{i}\right)=-\frac{2}{\sigma^{2}}$.

$$
\Rightarrow \quad W=-\frac{2}{\sigma^{2}} \mathrm{Id} \quad \Rightarrow \quad-\frac{2}{\sigma^{2}} J^{\top} J \Delta \xi=\frac{2}{\sigma^{2}} J^{\top} \mathbf{r}(\mathbf{0}) \quad \Rightarrow \quad \text { claim }
$$

