High-Quality 3D Reconstruction from RGB-D Sensors

Computer Vision II: Multiple View Geometry

Current Research

Robert Maier

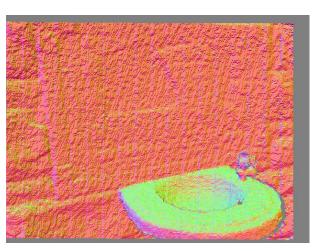
robert.maier@in.tum.de https://vision.in.tum.de/members/maierr

Overview

- RGB-D Sensors
- Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions (Bylow et al, RSS 2013)
- De-noising, Stabilizing and Completing 3D Reconstructions On-the-go using Plane Priors (Dzitsiuk et al, ICRA 2017)
- Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting (Maier et al, ICCV 2017)

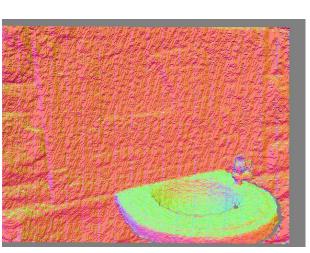
RGB-D Sensors

- RGB-D: color (RGB) + depth (metric!)
- Depth 640x480px @ 30 fps
- Color (up to 1280x1024px @ 10 fps)



RGB-D Sensors

- RGB-D: color (RGB) + depth (metric!)
- Depth 640x480px @ 30 fps
- Color (up to 1280x1024px @ 10 fps)
- Structured Light / Time-of-flight
- Low-cost!



Microsoft Kinect v1

Occipital Structure Sensor

Intel RealSense R200

Google Tango (Lenovo Phab 2 Pro)

RGB-D based 3D reconstruction

- Dense real-time 3D reconstruction of real-world objects/scenes from RGB-D data
- SLAM: Simultaneous Localization and Mapping (RGB-D-SLAM)
- Focus in this talk: methods that use Signed Distance Fields (SDF) as model
- Applications:
 - Augmented/Virtual Reality
 - Robotics
 - Industrial inspection
 - etc

KinectFusion (Newcombe et al, ISMAR 2011)

Parrot AR drone

Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

E. Bylow¹, J. Sturm², C. Kerl², F. Kahl¹, D. Cremers²

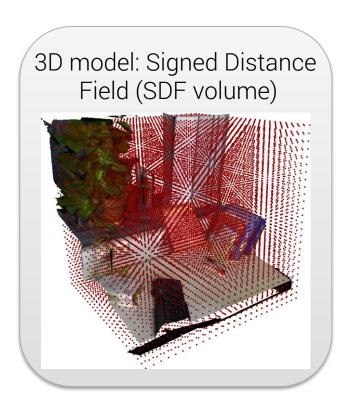
¹ Lund University

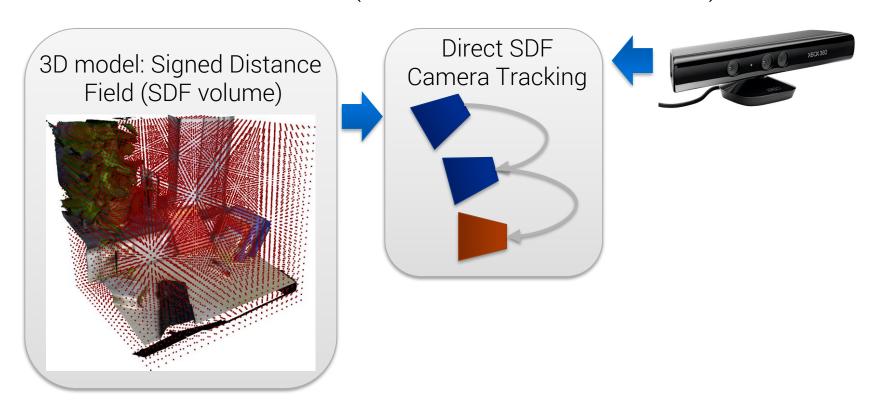
LUND

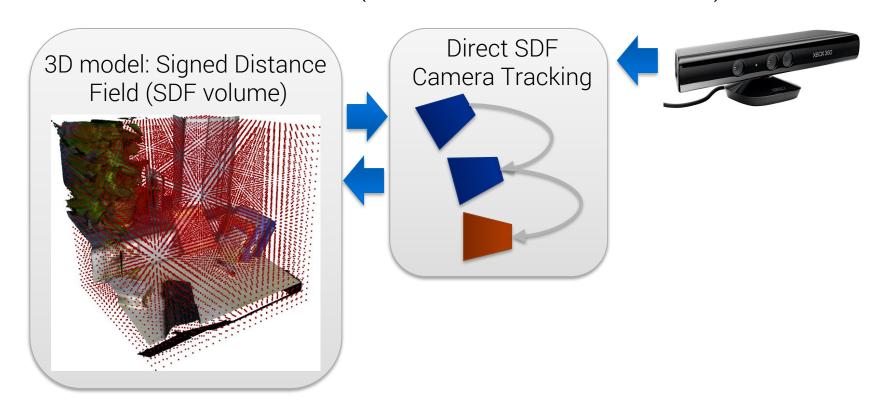
² Technical University of Munich

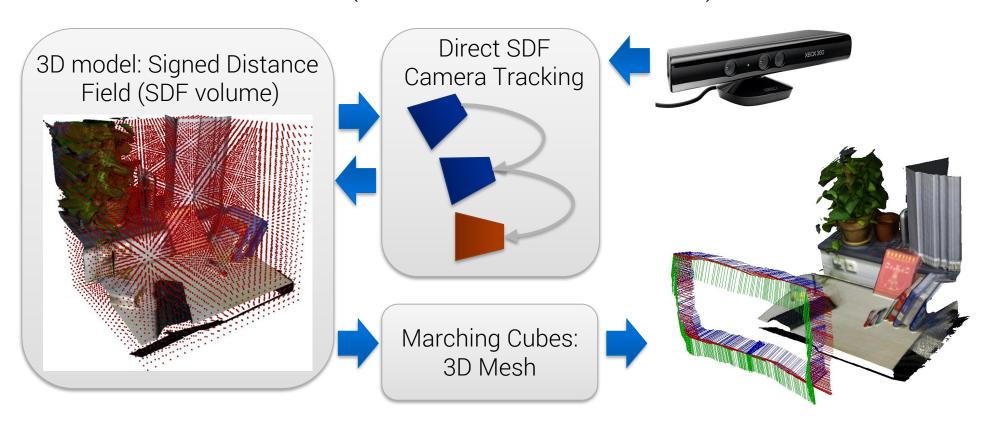
Robotics: Science and Systems (RSS) 2013, Berlin, Germany





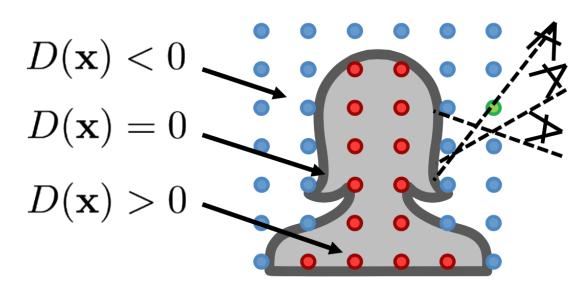






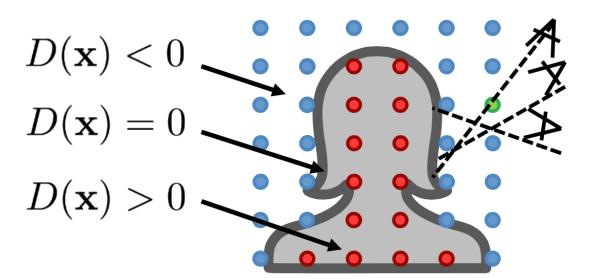
SDF Volume

- Volumetric 3D model representation: dense voxel grid
- Each voxel stores:
 - Signed Distance Function (SDF): signed distance to closest surface
 - Color values
 - Weights



SDF Volume

- Volumetric 3D model representation: dense voxel grid
- Each voxel stores:
 - Signed Distance Function (SDF): signed distance to closest surface
 - Color values
 - Weights



Update (weighted average):

$$D \leftarrow \frac{WD + wd}{W + w}$$

$$C \leftarrow \frac{WC + wc}{W + w}$$

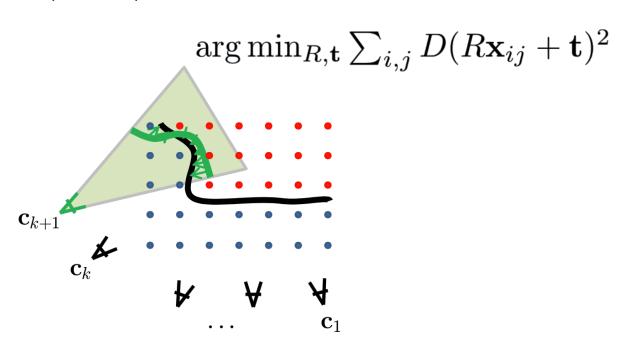
$$W \leftarrow W + w$$

Camera tracking

- Estimate current camera pose from input RGB-D frame
- KinectFusion: synthetic depth map from SDF (raycasting) + ICP alignment

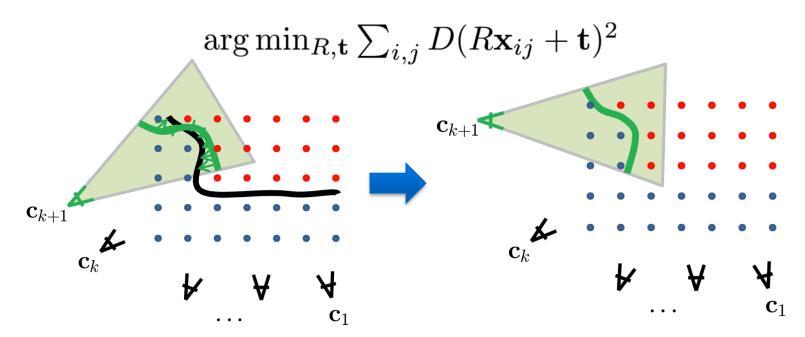
Camera tracking

- Estimate current camera pose from input RGB-D frame
- KinectFusion: synthetic depth map from SDF (raycasting) + ICP alignment
- Novel direct camera tracking against SDF: direct minimization of error between input depth map and SDF:



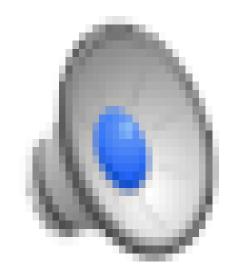
Camera tracking

- Estimate current camera pose from input RGB-D frame
- KinectFusion: synthetic depth map from SDF (raycasting) + ICP alignment
- Novel direct camera tracking against SDF: direct minimization of error between input depth map and SDF:



Extension: CopyMe3D

CopyMe3D: Scanning and Printing Persons in 3D (Sturm et al, GCPR 2013)

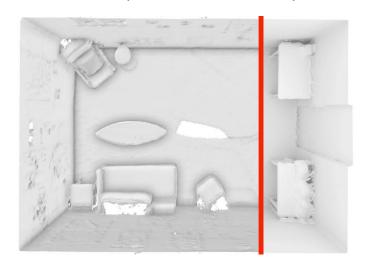


CopyMe3D

Printed 3D figures

De-noising, Stabilizing and Completing 3D Reconstructions On-the-go using Plane Priors

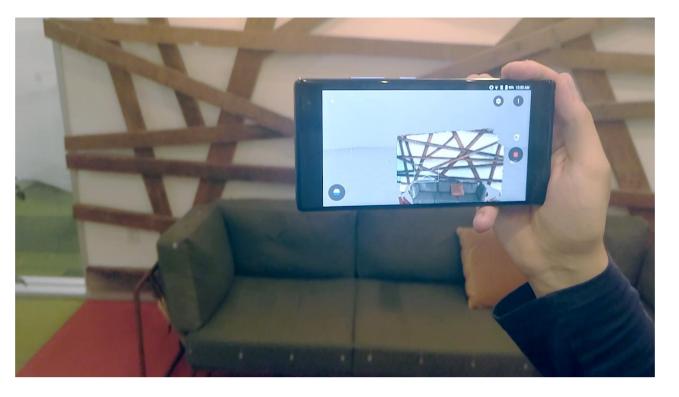
M. Dzitsiuk^{1,2}, J. Sturm², R. Maier¹, L. Ma¹, D. Cremers¹



¹ Google

² Technical University of Munich

Real-time 3D reconstruction on mobile device

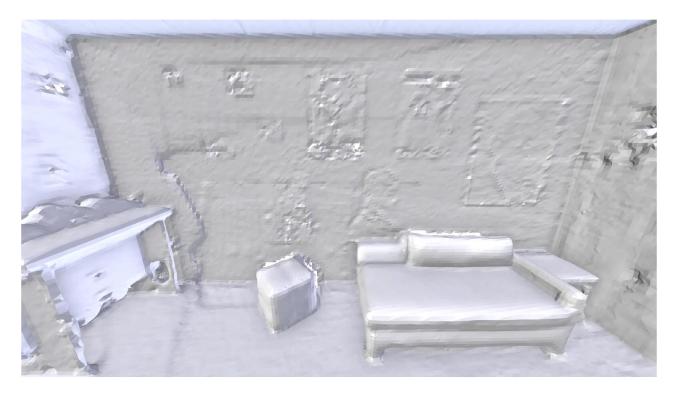


Newcombe et al. "KinectFusion: Real-time dense surface mapping and tracking.", 2011.

Nießner et al. "Real-time 3D reconstruction at scale using voxel hashing.", 2013.

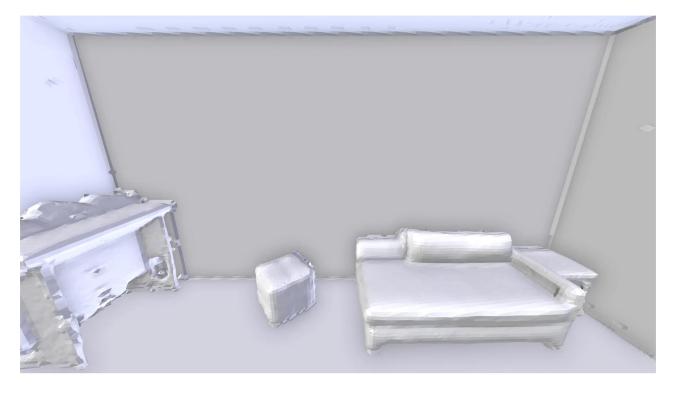
Klingensmith et al. "Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields.", 2015.

Motivation



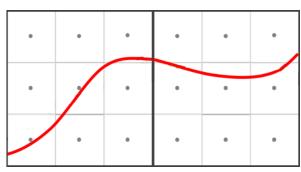
- Problems with real-time 3D reconstruction:
 - Noisy
 - Incomplete
 - No segmentation

Motivation



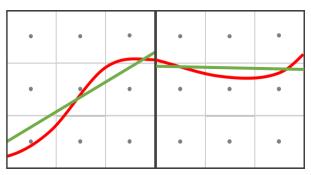
Solution idea: detect and use planes

• Input: Signed Distance Field divided into chunks



- Input: Signed Distance Field divided into chunks
- 1. Find plane candidates
 - Using robust least squares on SDF

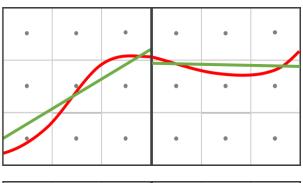
$$\underset{\mathbf{p}}{\operatorname{arg\,min}} \sum_{\mathbf{x}_k \in \mathcal{V}} w(r_k)(r_k)^2$$



- Input: Signed Distance Field divided into chunks
- 1. Find plane candidates
 - Using robust least squares on SDF

$$\underset{\mathbf{p}}{\operatorname{arg\,min}} \sum_{\mathbf{x}_k \in \mathcal{V}} w(r_k)(r_k)^2$$

- 2. Merge planes
 - RANSAC on plane candidates

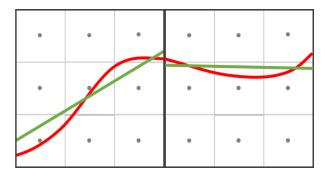


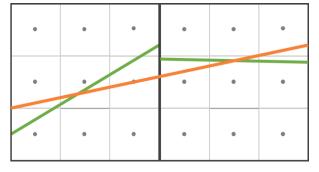


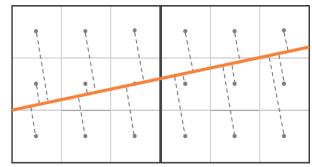
- Input: Signed Distance Field divided into chunks
- 1. Find plane candidates
 - Using robust least squares on SDF

$$\underset{\mathbf{p}}{\operatorname{arg\,min}} \sum_{\mathbf{x}_k \in \mathcal{V}} w(r_k)(r_k)^2$$

- 2. Merge planes
 - RANSAC on plane candidates
- 3. De-noising
 - Create new SDF that combines original values with planes







Results: De-noising

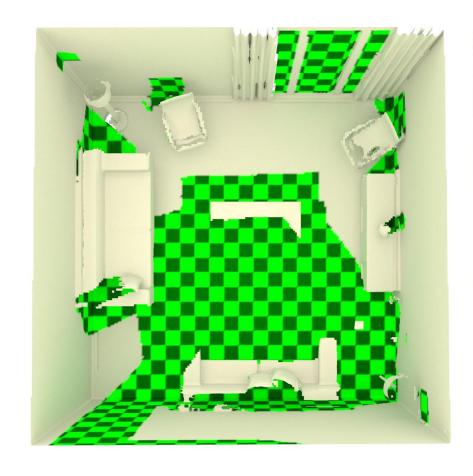
Before

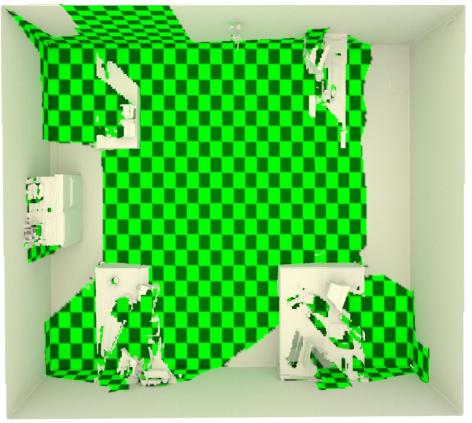
Results: De-noising

Before

After

Results: Hole filling



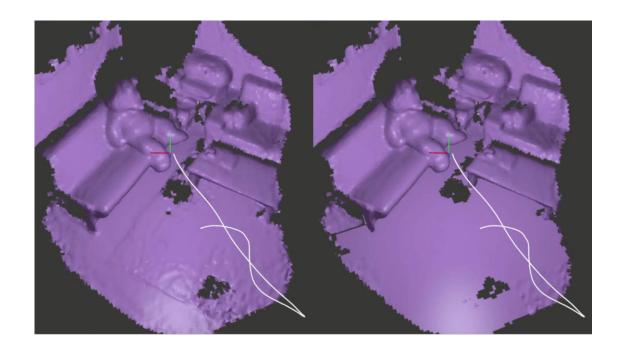


Results: Segmentation

- Classify reconstruction geometry:
 - Floor or wall, based on area and angle with gravity
 - Object, based on mesh connected components

Conclusions

- Real-time 3D reconstruction on mobile device
- Incorporates plane priors into Signed Distance Field
- Enables de-noising, hole filling, segmentation



Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

R. Maier^{1,2}, K. Kim², M. Nießner^{1,3}, D. Cremers¹, J. Kautz²

¹ NVIDIA

² Technical University of Munich

³ Stanford University

International Conference on Computer Vision (ICCV)
October 2017, Venice, Italy

Overview

- Motivation
- Previous Work
- Approach
- Results
- Conclusion

Motivation

Motivation

 Requirement of high-quality 3D content for Augmented Reality, Virtual Reality, Gaming, ...

HTC Vive

NVIDIA VR Funhouse

- Requirement of high-quality 3D content for Augmented Reality, Virtual Reality, Gaming, ...
- Usually: manual modelling (e.g. Maya)

HTC Vive

NVIDIA VR Funhouse

- Requirement of high-quality 3D content for Augmented Reality, Virtual Reality, Gaming, ...
- Usually: manual modelling (e.g. Maya)
- Wide availability of commodity RGB-D sensors (e.g. Kinect): efficient methods for 3D reconstruction of real-word objects

HTC Vive

NVIDIA VR Funhouse

- Requirement of high-quality 3D content for Augmented Reality, Virtual Reality, Gaming, ...
- Usually: manual modelling (e.g. Maya)
- Wide availability of commodity RGB-D sensors (e.g. Kinect): efficient methods for 3D reconstruction of real-word objects
- Question: how to reconstruct high-quality 3D models with best-possible geometry and color from low-cost depth sensors?

HTC Vive

NVIDIA VR Funhouse

 Goal: High-Quality Reconstruction of Geometry and Color from commodity RGB-D sensors

 Goal: High-Quality Reconstruction of Geometry and Color from commodity RGB-D sensors

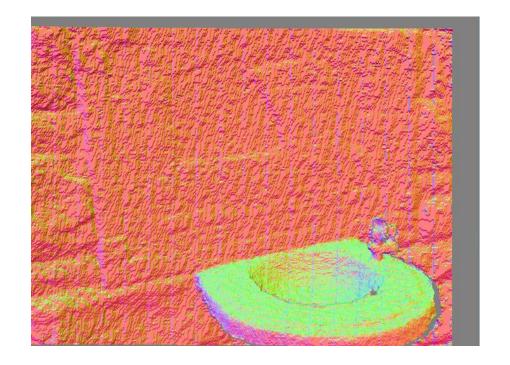
Challenges:

 Goal: High-Quality Reconstruction of Geometry and Color from commodity RGB-D sensors

- Challenges:
 - Input data quality (e.g. motion blur, sensor noise)

 Goal: High-Quality Reconstruction of Geometry and Color from commodity RGB-D sensors

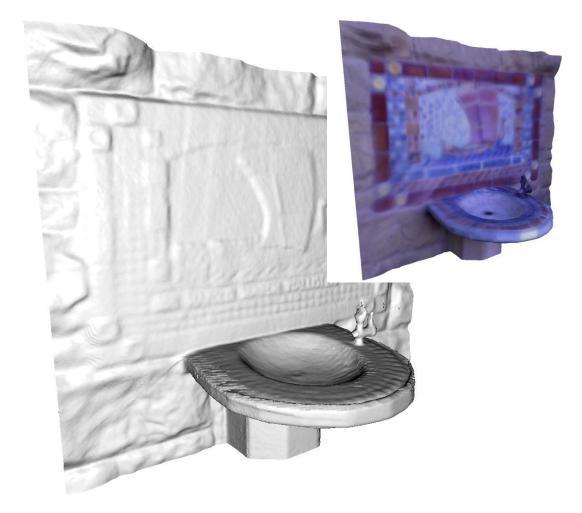
- Challenges:
 - Input data quality (e.g. motion blur, sensor noise)



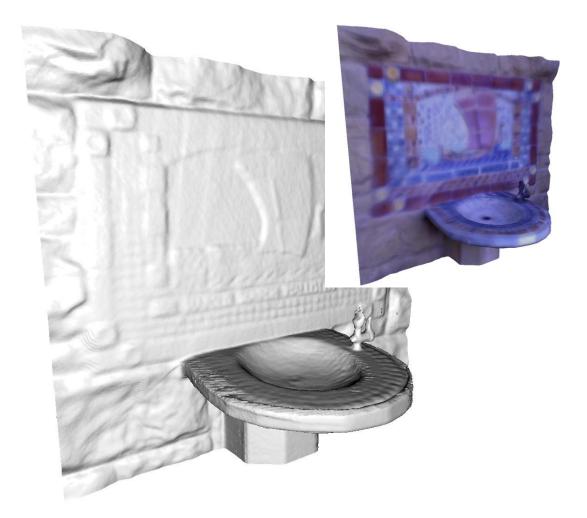
 Goal: High-Quality Reconstruction of Geometry and Color from commodity RGB-D sensors

Challenges:

- Input data quality (e.g. motion blur, sensor noise)
- Inaccurate camera pose estimation
- (Slightly) inaccurate and over-smoothed geometric reconstruction



 Temporal view sampling & filtering techniques (input frames)



- Temporal view sampling & filtering techniques (input frames)
- Joint optimization of
 - surface & albedo (Signed Distance Field)
 - image formation model (camera poses & intrinsics)

- Temporal view sampling & filtering techniques (input frames)
- Joint optimization of
 - surface & albedo (Signed Distance Field)
 - image formation model (camera poses & intrinsics)
- Lighting estimation using Spatially-Varying Spherical Harmonics (SVSH)

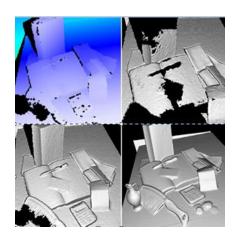
- Temporal view sampling & filtering techniques (input frames)
- Joint optimization of
 - surface & albedo (Signed Distance Field)
 - image formation model (camera poses & intrinsics)
- Lighting estimation using Spatially-Varying Spherical Harmonics (SVSH)

- Temporal view sampling & filtering techniques (input frames)
- Joint optimization of
 - surface & albedo (Signed Distance Field)
 - image formation model (camera poses & intrinsics)
- Lighting estimation using Spatially-Varying Spherical Harmonics (SVSH)
- Optimized colors (by-product)

Previous Work

RGB-D based 3D Reconstruction

- Given a stream of RGB-D frames of an object/scene, compute its 3D shape that maximizes the geometric-consistency
- Real-time, robust, fairly accurate geometric reconstructions



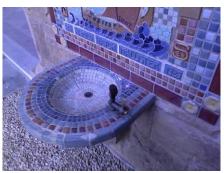
KinectFusion, 2011

DynamicFusion, 2015

BundleFusion, 2016

Voxel Hashing

Baseline RGB-D based 3D reconstruction framework (initial camera poses and sparse SDF reconstruction): accurate geometric reconstruction, bad colors



Colors 😊

Input Frames

Geometry

High-Quality Colors [Zhou2014]

Optimize camera poses and image deformations to optimally fit initial (maybe wrong) reconstruction

But: Need HQ image, no geometry refinement involved

"Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras" Zhou and Koltun, ToG 2014

High-Quality Geometry [Zollhoefer2015]

Adjust camera poses in advance (bundle adjustment) to improve color

Use shading cues (RGB) to refine geometry (shading based refinement of surface & albedo)

But: RGB is fixed (no color refinement based on refined geometry)

"Shading-based Refinement on Volumetric Signed Distance Functions" Zollhoefer et al., ToG 2015

High-Quality Colors [Zhou2014]

Optimize camera poses and image deformations to optimally fit initial (maybe wrong) reconstruction

But: Need HQ image, no geometry refinement involved

"Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras" Zhou and Koltun, ToG 2014

Idea:

High-Quality Geometry [Zollhoefer2015]

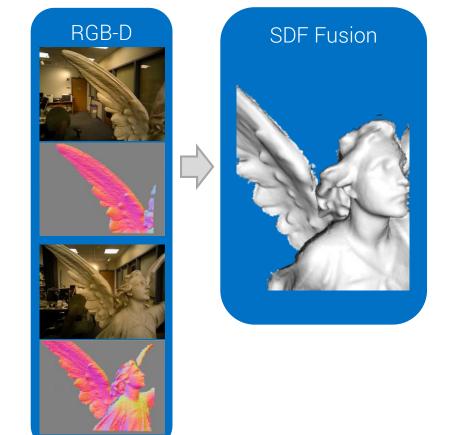
Adjust camera poses in advance (bundle adjustment) to improve color

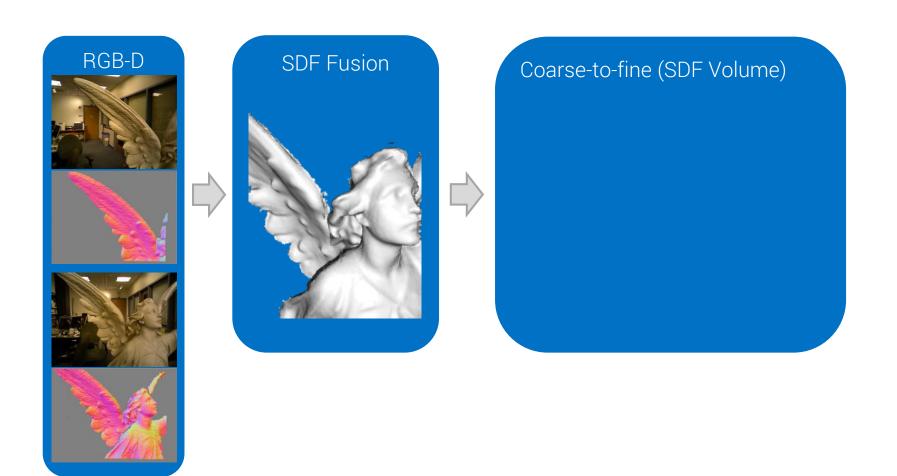
Use shading cues (RGB) to refine geometry (shading based refinement of surface & albedo)

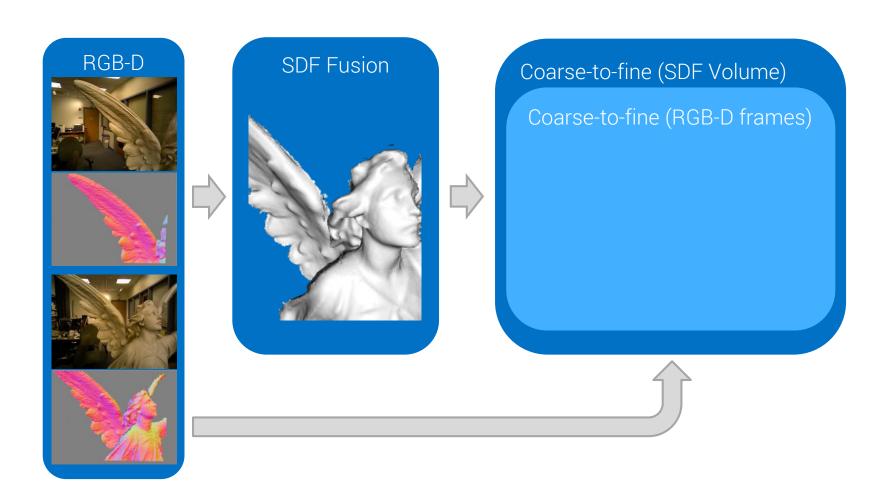
But: RGB is fixed (no color refinement based on refined geometry)

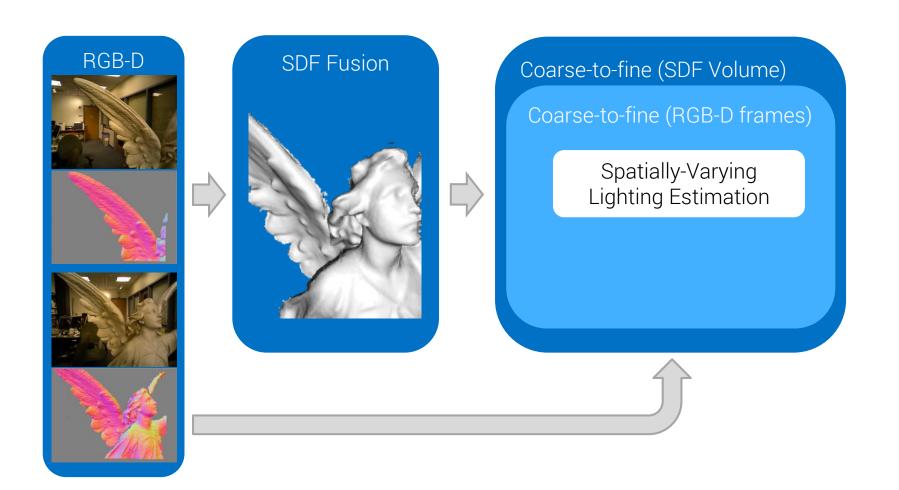
"Shading-based Refinement on Volumetric Signed Distance Functions" Zollhoefer et al., ToG 2015

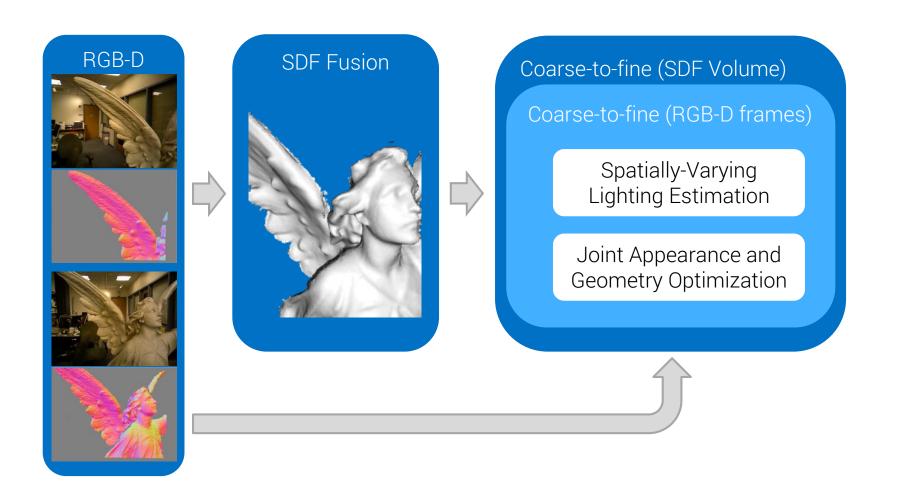
jointly optimize for geometry, albedo and image formation model to simultaneously obtain high-quality geometry and appearance!

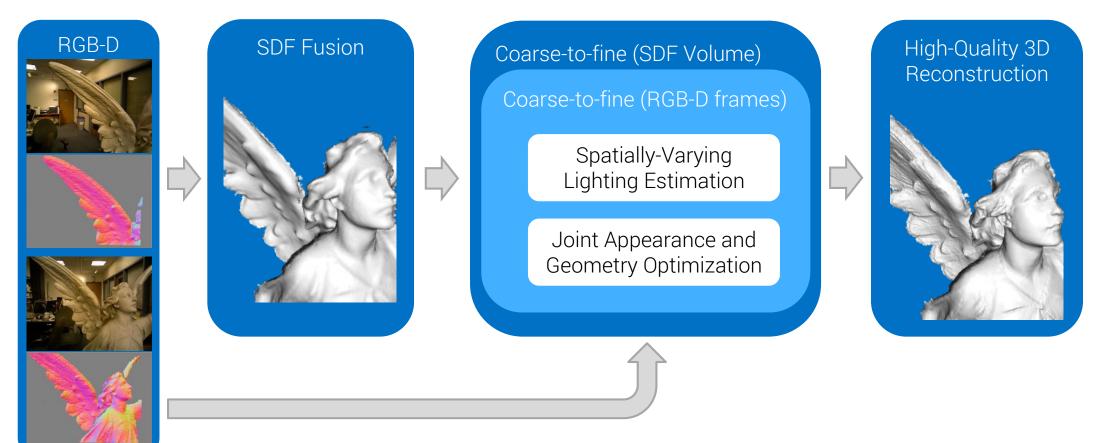








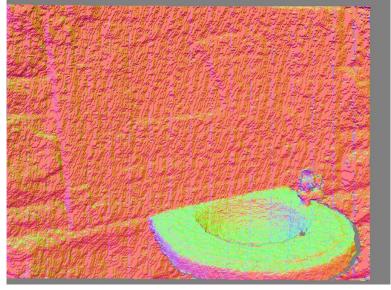




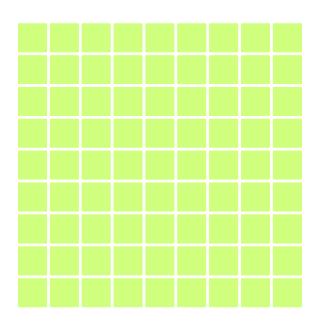
RGB-D Data

Fountain

- 1086 RGB-D frames
- Sensor:
 - Depth 640x480px
 - Color 1280x1024px
 - ~10 Hz
 - Primesense



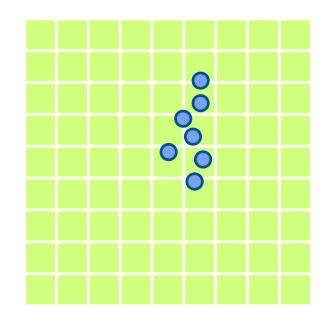
 Volumetric Signed Distance Field (SDF)¹: 3D voxel grid that stores signed distance to closest surface at each voxel



¹ "A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

² "Marching cubes: A high resolution 3D surface construction algorithm", Lorensen and Cline, SIGGRAPH 1987.

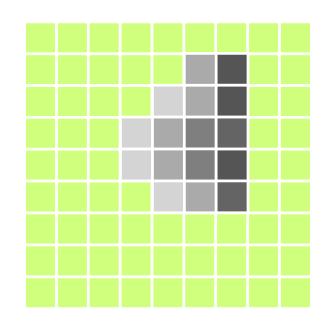
- Volumetric Signed Distance Field (SDF)¹: 3D voxel grid that stores signed distance to closest surface at each voxel
- Integrate depth maps into (sparse) SDF with their estimated camera poses



¹ "A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

² "Marching cubes: A high resolution 3D surface construction algorithm", Lorensen and Cline, SIGGRAPH 1987.

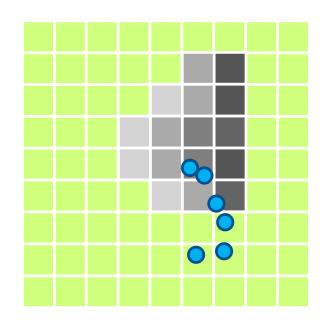
- Volumetric Signed Distance Field (SDF)¹: 3D voxel grid that stores signed distance to closest surface at each voxel
- Integrate depth maps into (sparse) SDF with their estimated camera poses



¹ "A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

² "Marching cubes: A high resolution 3D surface construction algorithm", Lorensen and Cline, SIGGRAPH 1987.

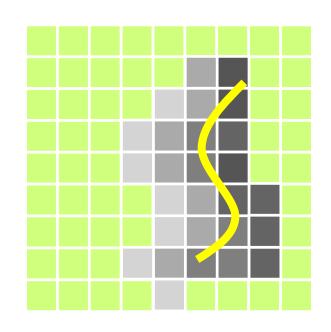
- Volumetric Signed Distance Field (SDF)¹: 3D voxel grid that stores signed distance to closest surface at each voxel
- Integrate depth maps into (sparse) SDF with their estimated camera poses



¹ "A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

² "Marching cubes: A high resolution 3D surface construction algorithm", Lorensen and Cline, SIGGRAPH 1987.

- Volumetric Signed Distance Field (SDF)¹: 3D voxel grid that stores signed distance to closest surface at each voxel
- Integrate depth maps into (sparse) SDF with their estimated camera poses
- Extract ISO-surface with Marching Cubes² (triangle mesh)



¹ "A volumetric method for building complex models from range images", Curless and Levoy, SIGGRAPH 1996.

² "Marching cubes: A high resolution 3D surface construction algorithm", Lorensen and Cline, SIGGRAPH 1987.

Shape-from-Shading

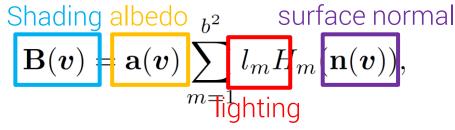
• Shading equation: $\mathbf{B}(oldsymbol{v}) = \mathbf{a}(oldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(oldsymbol{v})),$

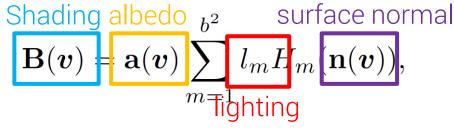
Shape-from-Shading

Shading equation: $\mathbf{B}(m{v}) = \mathbf{a}(m{v}) \sum_{m=1}^{b^2} l_m H_m \boxed{\mathbf{n}(m{v})},$

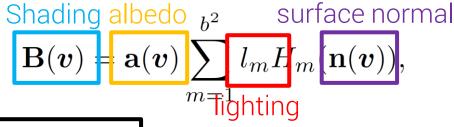
$$\mathbf{B}(oldsymbol{v}) = \mathbf{a}(oldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(oldsymbol{\mathbf{n}}(oldsymbol{v})),$$

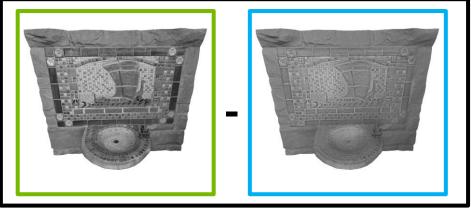
$$\mathbf{B}(\boldsymbol{v}) = \mathbf{a}(\boldsymbol{v}) \sum_{m=1}^{b^2} l_m H_m(\mathbf{n}(\boldsymbol{v})),$$





- Shading-based refinement:
 - Estimate lighting given surface and albedo (intrinsic material properties)





- Shading-based refinement:
 - Estimate lighting given surface and albedo (intrinsic material properties)
 - Estimate surface and albedo given the lighting: minimize difference between estimated shading and input luminance

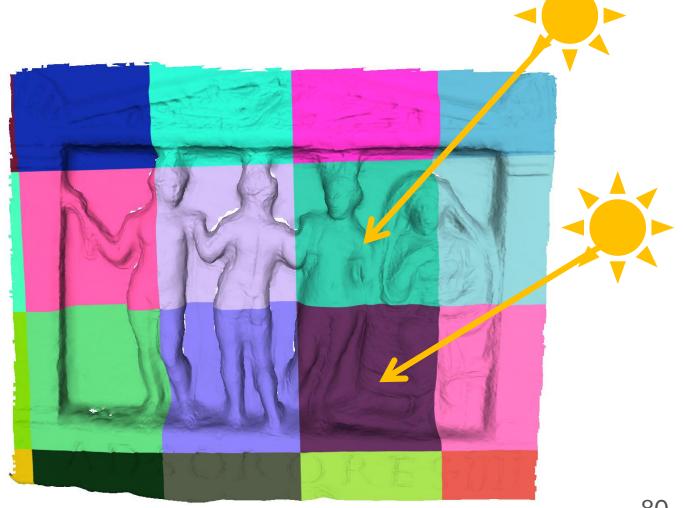
Subvolume Partitioning

Subvolume Partitioning

 Partition SDF volume into subvolumes of fixed size

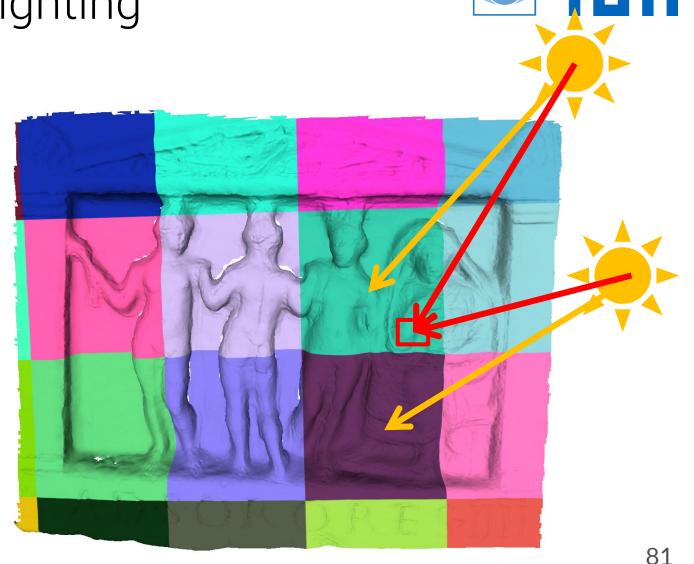
Subvolume Partitioning

- Partition SDF volume into subvolumes of fixed size
- Estimate independent Spherical Harmonics (SH coefficients) for each subvolume



Subvolume Partitioning

- Partition SDF volume into subvolumes of fixed size
- Estimate independent Spherical Harmonics (SH coefficients) for each subvolume
- Obtain per-voxel SH coefficients through tri-linear interpolation



• Estimate SVSH Coefficients for all subvolumes jointly:

$$E_{\text{lighting}}(\boldsymbol{l}_1,\ldots,\boldsymbol{l}_K) = E_{\text{appearance}} + \lambda_{\text{diffuse}} E_{\text{diffuse}}.$$

Estimate SVSH Coefficients for all subvolumes jointly:

$$E_{\text{lighting}}(\boldsymbol{l}_1,\ldots,\boldsymbol{l}_K) = E_{\text{appearance}} + \lambda_{\text{diffuse}} E_{\text{diffuse}}.$$

Data term:

$$E_{\text{appearance}} = \sum_{\boldsymbol{v} \in \mathbf{D}_0} (\mathbf{B}(\boldsymbol{v}) - \mathbf{I}(\boldsymbol{v}))^2.$$

Similarity between estimated shading and input luminance

Estimate SVSH Coefficients for all subvolumes jointly:

$$E_{\text{lighting}}(\boldsymbol{l}_1,\ldots,\boldsymbol{l}_K) = E_{\text{appearance}} + \lambda_{\text{diffuse}} E_{\text{diffuse}}.$$

Data term:

$$E_{\text{appearance}} = \sum_{\boldsymbol{v} \in \mathbf{D}_0} (\mathbf{B}(\boldsymbol{v}) - \mathbf{I}(\boldsymbol{v}))^2.$$

Similarity between estimated shading and input luminance

Laplacian regularizer:

$$E_{\text{diffuse}} = \sum_{s \in \mathcal{S}} \sum_{r \in \mathcal{N}_s} (\boldsymbol{l}_s - \boldsymbol{l}_r)^2.$$

Smooth illumination changes

 Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\tilde{\mathbf{D}}, \mathbf{a}, \mathcal{T}, f_x, f_y, c_x, c_y) = \sum_{\boldsymbol{v} \text{ s.t. } |\tilde{\mathbf{D}}(\boldsymbol{v})| < t_{\text{shell}}} \lambda_g E_g + \lambda_v E_v + \lambda_s E_s + \lambda_a E_a,$$

 Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\tilde{\mathbf{D}}, \mathbf{a}, \mathcal{T}, f_x, f_y, c_x, c_y) = \sum_{\boldsymbol{v} \text{ s.t. } |\tilde{\mathbf{D}}(\boldsymbol{v})| < t_{\text{shell}}} \lambda_{\boldsymbol{v}} E_y + \lambda_{\boldsymbol{v}} E_v + \lambda_{\boldsymbol{s}} E_s + \lambda_{\boldsymbol{a}} E_a,$$

Gradient-based shading constraint (data term)

 Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\tilde{\mathbf{D}}, \mathbf{a}, \mathcal{T}, f_x, f_y, c_x, c_y) = \sum_{\boldsymbol{v} \text{ s.t. } |\tilde{\mathbf{D}}(\boldsymbol{v})| < t_{\text{shell}}} \lambda_{\boldsymbol{v}} E_y + \lambda_{\boldsymbol{v}} E_v + \lambda_s E_s + \lambda_a E_a,$$

Gradient-based shading constraint (data term)

Volumetric regularizer: smoothness in distance values (Laplacian)

 Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\tilde{\mathbf{D}}, \mathbf{a}, \mathcal{T}, f_x, f_y, c_x, c_y) = \sum_{\boldsymbol{v} \text{ s.t. } |\tilde{\mathbf{D}}(\boldsymbol{v})| < t_{\text{shell}}} \lambda_{\boldsymbol{v}} E_y + \lambda_{\boldsymbol{v}} E_v + \lambda_{\boldsymbol{s}} E_s + \lambda_a E_a,$$

Gradient-based shading constraint (data term)

Volumetric regularizer: smoothness in distance values (Laplacian)

Surface Stabilization constraint: stay close to initial distance values

 Joint optimization of geometry, albedo and image formation model (camera poses and camera intrinsics):

$$E_{\text{scene}}(\tilde{\mathbf{D}}, \mathbf{a}, \mathcal{T}, f_x, f_y, c_x, c_y) = \sum_{\boldsymbol{v} \text{ s.t. } |\tilde{\mathbf{D}}(\boldsymbol{v})| < t_{\text{shell}}} \lambda_{\boldsymbol{v}} E_g + \lambda_{\boldsymbol{v}} E_v + \lambda_{\boldsymbol{s}} E_s + \lambda_{\boldsymbol{a}} E_a,$$

Gradient-based shading constraint (data term)

Volumetric regularizer: smoothness in distance values (Laplacian)

Surface Stabilization constraint: stay close to initial distance values

Albedo regularizer: constrain albedo changes based on chromacity (Laplacian)

(1) Keyframe Selection

Compute per-frame blur score (for color image) [Crete2007])

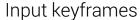
Frame 81 Frame 84

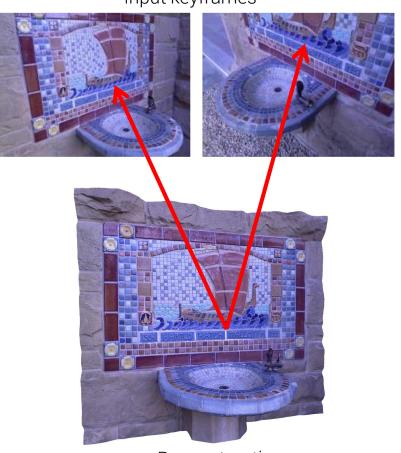
Select frame with best score within a fixed size window as keyframe

(2) Sampling & Colorization

- Sample from selected keyframes only
- Collect observations for voxel in input views:

$$c_i^v = \mathcal{C}_i(\pi(\mathcal{T}_i^{-1}\boldsymbol{v}_{\mathrm{iso}})).$$





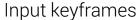
Reconstruction

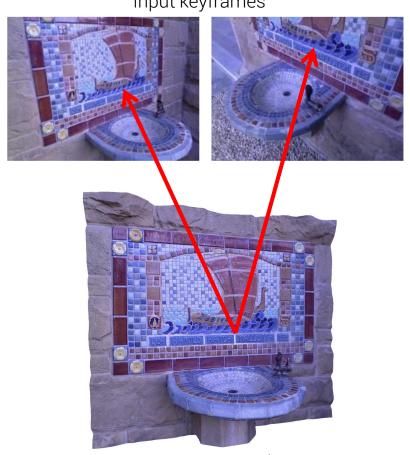
(2) Sampling & Colorization

- Sample from selected keyframes only
- Collect observations for voxel in input views:

$$c_i^v = \mathcal{C}_i(\pi(\mathcal{T}_i^{-1}v_{\text{iso}})).$$

Voxel center transformed and projected into input view





Reconstruction

(2) Sampling & Colorization

- Sample from selected keyframes only
- Collect observations for voxel in input views:

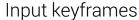
$$c_i^v = \mathcal{C}_i(\pi(\mathcal{T}_i^{-1}v_{\text{iso}})).$$

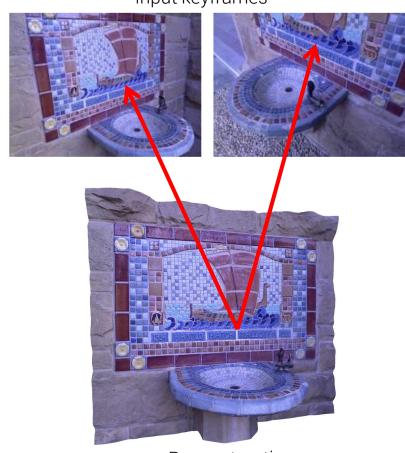
Voxel center transformed and projected into input view

• Observation weights: view-dependent on normal and depth $cos(\theta)$

 $w_i^{\mathbf{v}} = \frac{\cos(\theta)}{d^2}$

Filter observations: keep only best 5 observations by weight





Reconstruction

(3) Data Term

• Intuition: high-frequency changes in surface geometry result in shading cues in input images

(3) Data Term

- Intuition: high-frequency changes in surface geometry result in shading cues in input images
- Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\mathbf{v}) = \sum_{\mathcal{I}_i \in \varsigma} w_i^{\mathbf{v}} \|\nabla \mathbf{B}(\mathbf{v}) - \nabla \mathcal{I}_i(\pi(v_c))\|_2^2$$

(3) Data Term

- Intuition: high-frequency changes in surface geometry result in shading cues in input images
- Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\mathbf{v}) = \sum_{\mathcal{I}_i \in \varsigma} |\mathbf{v}_i^{\mathbf{v}}| |\nabla \mathbf{B}(\mathbf{v}) - \nabla \mathcal{I}_i(\pi(v_c))||_2^2$$

Best views for voxel and respective view-dependent weights

(3) Data Term

- Intuition: high-frequency changes in surface geometry result in shading cues in input images
- Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\mathbf{v}) = \sum_{\mathcal{I}_i \in \varsigma} |\mathbf{v}_i^{\mathbf{v}}| |\nabla \mathbf{B}(\mathbf{v}) - \nabla \mathcal{I}_i |\pi(v_c)|^2$$

Best views for voxel and respective view-dependent weights Voxel center transformed and projected into input view

(3) Data Term

- Intuition: high-frequency changes in surface geometry result in shading cues in input images
- Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\mathbf{v}) = \sum_{\mathcal{I}_i \in \varsigma} \mathbf{w}_i^{\mathbf{v}} |\nabla \mathbf{B}(\mathbf{v}) - \nabla \mathcal{I}_i [\pi(v_c)]|_2^2$$

Best views for voxel and respective view-dependent weights

Voxel center transformed and projected into input view Shading: allows for optimization of surface (through normal) and albedo

(3) Data Term

- Intuition: high-frequency changes in surface geometry result in shading cues in input images
- Idea: maximize consistency between estimated voxel shading and sampled intensities in input luminance images (gradient for robustness)

$$E_g(\mathbf{v}) = \sum_{\mathcal{I}_i \in \varsigma} |\mathbf{v}_i^{\mathbf{v}}| \nabla \mathbf{B}(\mathbf{v}) - \nabla \mathcal{I}_i [\pi(v_c)]|_2^2$$

Best views for voxel and respective view-dependent weights

Voxel center transformed and projected into input view

Shading: allows for optimization of surface (through normal) and albedo

Sampling: allows for optimization of camera poses and camera intrinsics

Recolorization

Optimal colors

Recompute voxel colors after optimization at each level

Recolorization

Optimal colors

- Recompute voxel colors after optimization at each level
- Sampling (see Shading Constraint)
 - Sample from keyframes only
 - Collect, weight and filter observations

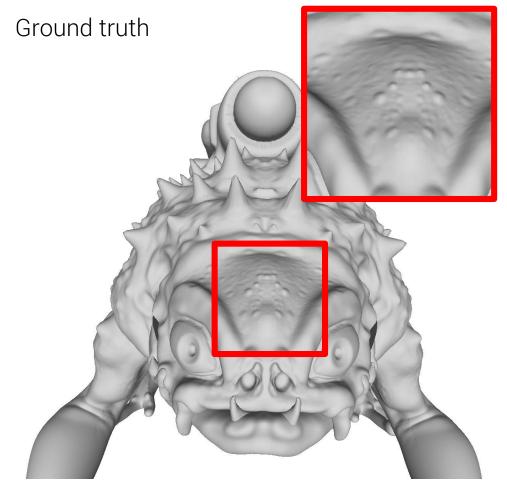
Recolorization

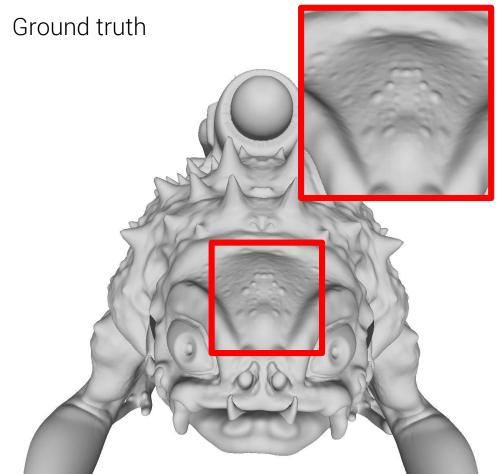
Optimal colors

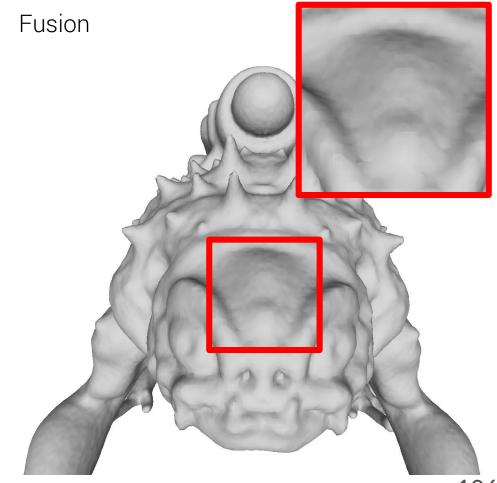
- Recompute voxel colors after optimization at each level
- Sampling (see Shading Constraint)
 - Sample from keyframes only
 - Collect, weight and filter observations
- Weighted average of observations:

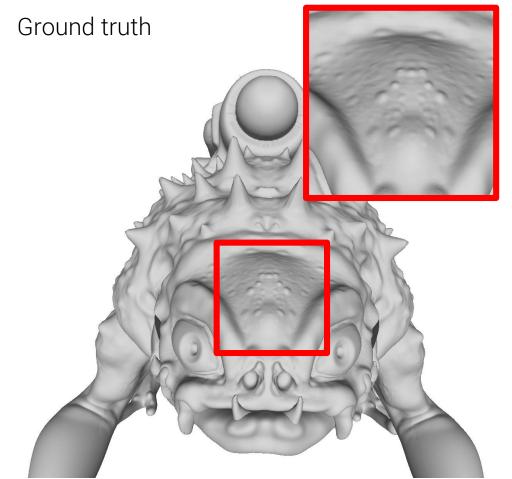
$$c_{\boldsymbol{v}}^* = \underset{c_{\boldsymbol{v}}}{\operatorname{arg\,min}} \sum_{(c_{i}^{\boldsymbol{v}}, w_{i}^{\boldsymbol{v}}) \in \mathcal{O}_{v}} w_{i}^{\boldsymbol{v}} (c_{\boldsymbol{v}} - c_{i}^{\boldsymbol{v}})^{2}.$$

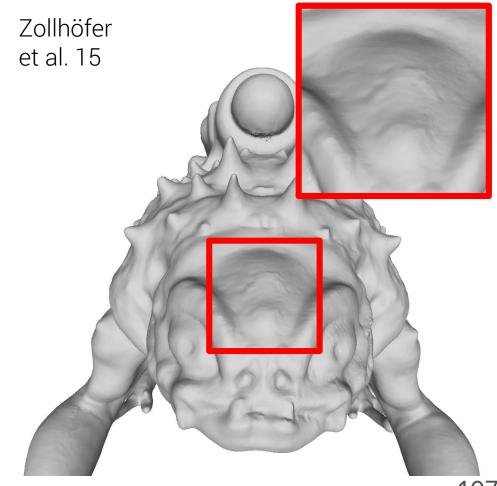
Results

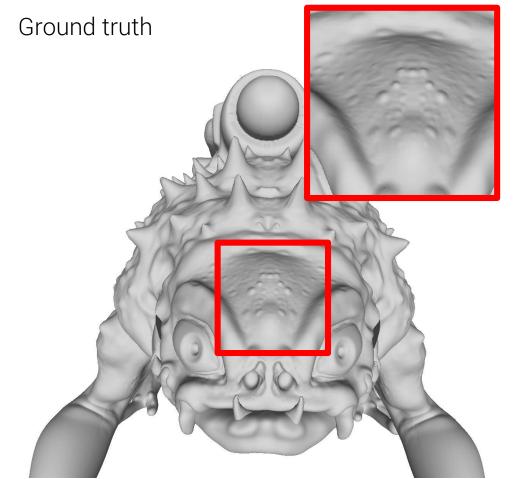


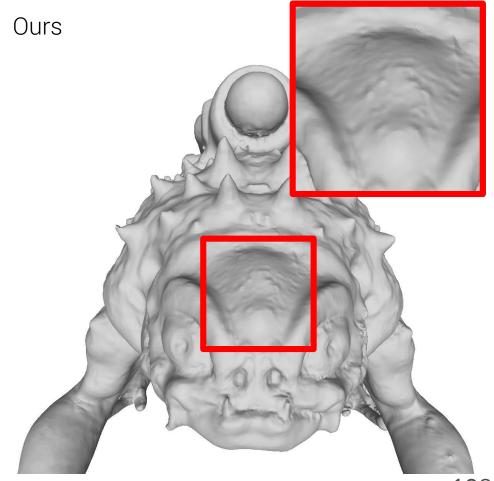






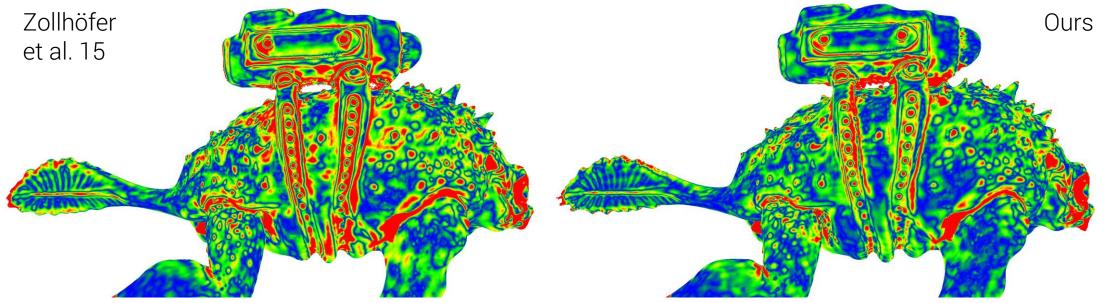


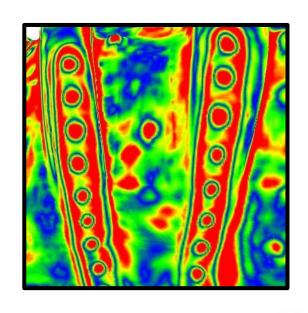




Frog (synthetic)

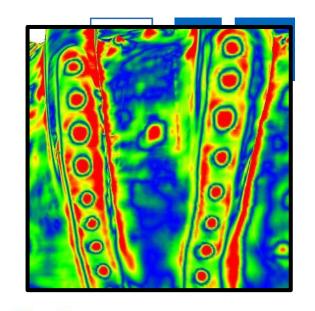
- Quantitative surface accuracy evaluation
- Color coding: absolute distances (ground truth)

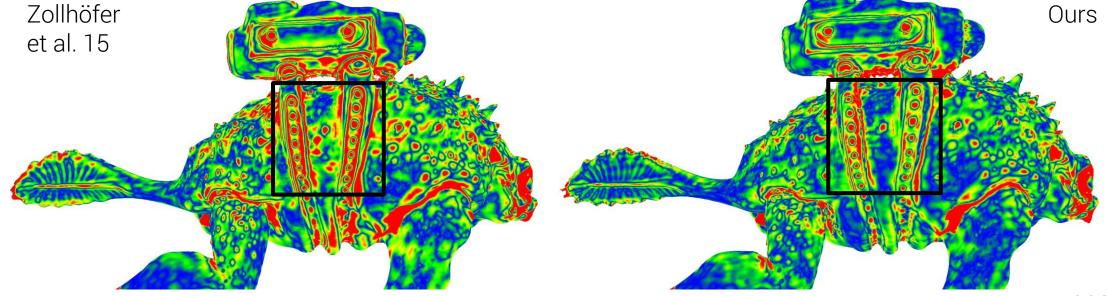


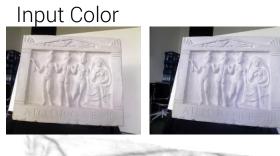


Frog (synthetic)

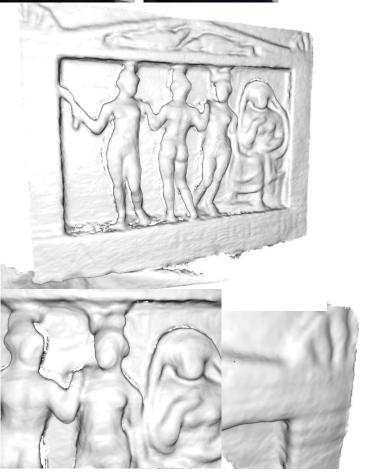
- Quantitative surface accuracy evaluation
- Color coding: absolute distances (ground truth)



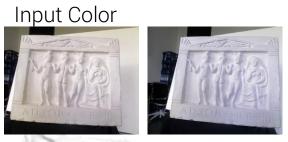


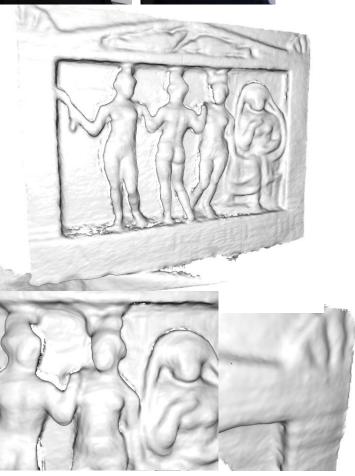


Relief



Fusion

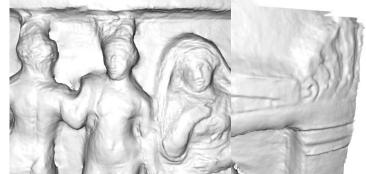




Fusion Zollhöfer et al. 15

Geometry

Relief



Fusion

Zollhöfer et al. 15

Ours

Lucy

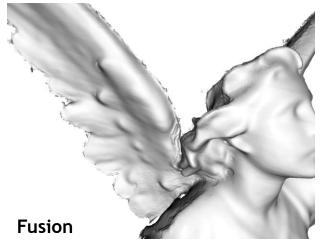
Input Color

Lucy

Input Color

Lucy

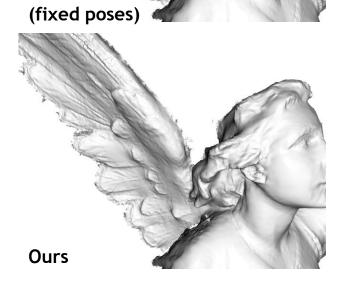
Input Color



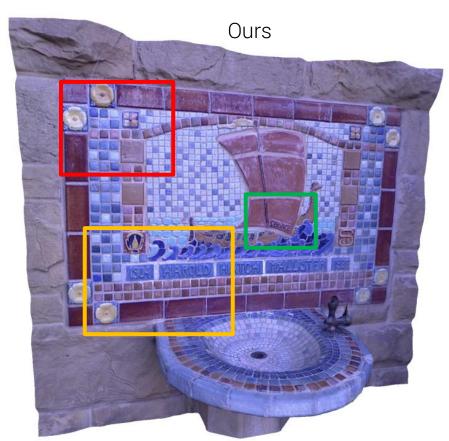
Lucy



Ours

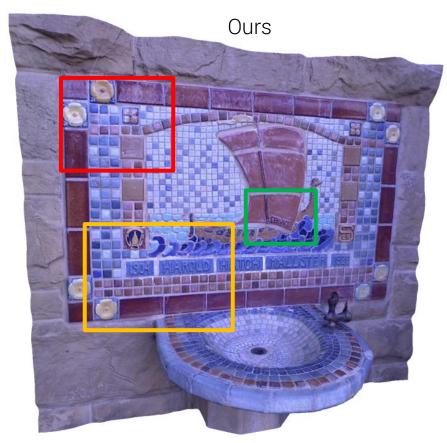


Appearance Fountain



Appearance Fountain

Appearance Fountain



Fusion

Zollhöfer et al. 15

Appearance Fountain

Fusion

Zollhöfer et al. 15

Ours

Appearance

Relief

Fusion 122

Appearance

Relief

Fusion

Zollhöfer et al. 15

Appearance

Relief

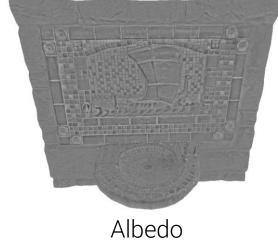
Zollhöfer et al. 15

Ours 124

Luminance

126

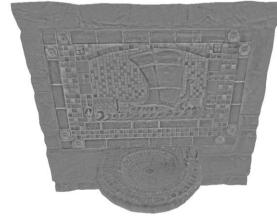
Luminance



Luminance

Difference

Global SH



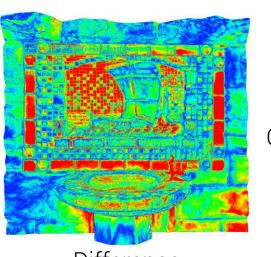
Albedo

Luminance

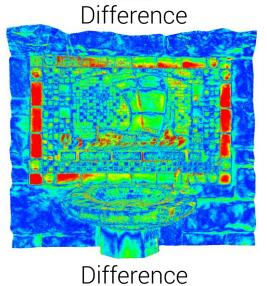
Albedo

Shading

Shading



Global SH



SVSH

Conclusion

Conclusion

High-Quality 3D Reconstruction of Geometry and Appearance

- Temporal view sampling & filtering techniques
- Spatially-Varying Lighting estimation
- Joint optimization of surface & albedo (SDF) and image formation model
- Optimized texture as by-product

Student Projects

- We offer: Master's Thesis, IDP, Guided Research
- Topics: (RGB-D based) 3D Reconstruction, SLAM, Visual Odometry, Shape from Shading, Photometric Stereo, ...
- Interested? Please contact:
 - Yvain Queau (yvain.queau@in.tum.de)
 - Robert Maier (robert.maier@in.tum.de)