Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2017

5. Move making algorithms	2
5. Move making algorithms	:
Boykov–Kolmogorov algorithm	4
Boykov–Kolmogorov algorithm Boykov–Kolmogorov algorithm	Ę
Boykov–Kolmogorov algorithm	6
Growth stage	7
Growth stage	8
Adoption stage	Ć
Adoption stage	L(
Adoption stage 1 Complexity 1	1
Binary image segmentation 1	2
Regular functions *	13
Regular energy functions	
Binary image segmentation	
Energy minimization via minimum $s-t$ cut $\ldots \ldots \ldots$	
Graph construction: unary energies	
Graph construction: pairwise energy	

	Graph construction: pairwise energy, $C-A\geqslant 0,\ D-C\geqslant 0$ *	
	Graph construction: pairwise energy, $A-C\geqslant 0$, $C-D\geqslant 0$ *	20
	Graph construction: pairwise energy, $C-A\geqslant 0$, $C-D\geqslant 0$ *	21
	Graph construction: pairwise energy, $C-A\geqslant 0$, $C-D\geqslant 0$ *	22
	Graph construction: pairwise energy, $C-A\geqslant 0$, $C-D\geqslant 0$ *	23
	Graph construction: pairwise energy, $C-A\geqslant 0$, $C-D\geqslant 0$ *	
	Graph construction: pairwise energy, $A-C\geqslant 0$, $D-C\geqslant 0$ *	25
	Graph construction	
	Remarks	27
M	ulti-label problem	28
	Multi-label problem	29
	Metric *	30
	-eta swap	3 1
	$lpha-eta$ swap $\ldots\ldots$	32
	Local optimization	
	Graph construction for semi-metrics	34
	Graph construction: t-links	35
	Graph construction: n-links	36
	lpha-eta swap algorithm *	37
	Summary *	38
	Literature *	30

Agenda for today's lecture *

In the **previous lecture** we learnt about the minimum s-t cut problem

Today we are going to learn about

- The Boykov–Kolmogorov algorithm
- Exact solution for **binary image segmentation** via graph cut
- lacktriangle Approximate solution for the **multi-label problem** via $\alpha-\beta$ swap

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -3/39

Boykov-Kolmogorov algorithm

- Main idea: Never start building an augmenting path from scratch
- lacktriangle Two non-overlapping search trees S and T with roots at the terminals
- The edges of the trees are *non-saturated*, i.e. f(i,j) < c(i,j)
- Active nodes:
- Passive nodes: O
- Free nodes:

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 5 / 39

Boykov-Kolmogorov algorithm

- 1: while true do
- 2: **grow** S or T to find an augmenting path P from s to t
- 3: if $P = \emptyset$ then
- 4: terminate
- 5: end if
- 6: **augment** on P
- 7: **adopt** orphans
- 8: end while

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 6 / 39

Growth stage

- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 7 / 39

Augmentation stage

- lacktriangle Find the bottleneck capacity Δ on P
- \blacksquare Update the residual graph by pushing flow Δ through P

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 8 / 39

Adoption stage

- Orphan (○ ○): the nodes such that the edges linking them to their parents are no longer valid (i.e. they are saturated)
- lacksquare By removing them the search trees S and T may be split into forests

We are trying to find a new valid parent for p among its neighbors, such that a new parent should belong to the same set, S or T, as the orphan

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -9/39

Adoption stage

If an orphan p does not find a valid parent then it becomes a $\it free\ node$

Scan all neighbors q of p such that q belong to the same tree as p:

- \blacksquare if tree c(q,p) > 0, add q to the active set
- \blacksquare if parent(q) = p, add q to the set of *orphans* and set parent $(q) = \emptyset$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -10/39

Complexity

- The Boykov-Kolmogorov algorithm is also an augmented path-based method with worst case complexity $\mathcal{O}(|\mathcal{E}| \cdot |\mathcal{V}|^2 \cdot |C|)$, where |C| is the capacity of the minimum cut.
- This complexity is worse than complexities of *Edmonds–Karp algorithm*, however, this algorithm *significantly* (\sim 2-10 \times) outperforms standard algorithms on typical problem instances in vision.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 11/39

Binary image segmentation

12 / 39

Regular functions *

Let us consider a function f of two binary variables, then f is called **regular**, if it satisfies the following inequality

$$f(0,0) + f(1,1) \le f(0,1) + f(1,0)$$
.

Example: the Potts-model is regular, since

$$[0 \neq 0] + [1 \neq 1] = 0 \le 2 = [0 \neq 1] + [1 \neq 0]$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -13 / 39

Regular energy functions

Let us consider an energy function E of n binary variables which can be written as the sum of functions of up to two variables, that is $E: \mathbb{B}^n \to \mathbb{R}$

$$E(y_1, ..., y_n) = \sum_{i} E_i(y_i) + \sum_{i < j} E_{ij}(y_i, y_j)$$
.

E is regular, if each term $E_{ij}: \mathbb{B}^2 \to \mathbb{R}$ for all i < j satisfies

$$E_{ij}(0,0) + E_{ij}(1,1) \leq E_{ij}(0,1) + E_{ij}(1,0)$$
.

If each term E_{ij} is regular, then it is possible to find the **global** minimum of E in polynomial time by solving a minimum s-t cut problem.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -14/39

Binary image segmentation

We have already seen that **binary image segmentation** can be reformulated as the minimization of an *energy function* $E: \mathbb{B}^{\mathcal{V}} \times \mathcal{X} \to \mathbb{R}$:

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; x_i) + \sum_{(i,j) \in \mathcal{E}} w \cdot [y_i \neq y_j].$$

where $\mathcal V$ corresponds to the output variables, i.e. the pixels, and $\mathcal E$ includes the pairs of 4-neighboring pixels.

Assume probability densities f_{bg} and f_{fg} estimated for the background and the foreground, respectively. The **unary energies** E_i for all $i \in \mathcal{V}$ can be defined as

$$E_i(0, x_i) = 0,$$

$$E_i(1, x_i) = \log \frac{f_{bg}(x_i)}{f_{fg}(x_i)}.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -15 / 39

Energy minimization via minimum s-t cut

Let us consider the following example

Through this example we illustrate how to minimize *regular energy functions* consisting of up to pairwise relationships. In our example $\mathbf{y} \in \mathbb{B}^2$ and $E(\mathbf{y})$ is defined as

$$E(\mathbf{y}) = E_1(y_1) + E_2(y_2) + E_{12}(y_1, y_2)$$
.

We will create a flow network $(\mathcal{V} \cup \{s,t\}, \mathcal{E}', c, s, t)$ such that the minimum s-t cut will correspond to the minimization of our energy function $E(\mathbf{y})$, where the labeling for each $i \in \mathcal{V}$ is defined as

$$y_i = \begin{cases} 0, & \text{if } i \in \mathcal{S} ,\\ 1, & \text{if } i \in \mathcal{T} . \end{cases}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -16 / 39

Graph construction: unary energies

Let us consider the unary energy function $E_i:\{0,1\}\to\mathbb{R}$.

Obviously, the minimum s-t cut of the flow network will correspond to

$$\underset{y_i \in \{0,1\}}{\operatorname{argmin}} E_i(y_i) .$$

When $E_i(1) > E_i(0)$ holds, then we can write

$$\underset{y_i \in \{0,1\}}{\operatorname{argmin}} E_i(y_i) = \underset{y_i \in \{0,1\}}{\operatorname{argmin}} E_i(y_i) - E_i(0) .$$

(t)

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -17/39

Graph construction: pairwise energy

Let us consider the pairwise energy function $E_{ij}(y_i, y_j) : \mathbb{B}^2 \to \mathbb{R}$. The possible values of $E_{ij}(y_i, y_j)$ are shown in the table:

$$\begin{array}{c|ccc}
E_{ij} & y_j = 0 & y_j = 1 \\
y_i = 0 & A & B \\
y_i = 1 & C & D
\end{array}$$

We furthermore assume that $E_{ij}(y_i,y_j)$ is regular, that is

$$E_{ij}(0,0) + E_{ij}(1,1) \leq E_{ij}(0,1) + E_{ij}(1,0)$$

 $A + D \leq B + C$.

Let us note that $E_{ij}(y_i,y_j)$ can be decomposed as:

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 18 / 39

$$C-A$$

$$D-C$$

$$i$$

$$B+C-A-D$$

$$j$$

$$\begin{array}{c|ccc}
E_{ij} & y_j = 0 & y_j = 1 \\
\hline
y_i = 0 & A & B \\
y_i = 1 & C & D
\end{array}$$

Labeling: $y_i = y_j = 0$.

$$\begin{split} C-A\geqslant 0 &\Rightarrow C\geqslant A\;.\\ D-C\geqslant 0 &\Rightarrow D\geqslant C \;\Rightarrow\; D\geqslant A\;.\\ 0\leqslant B+C-A-D\leqslant B-A &\Rightarrow B\geqslant A\;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 19 / 39

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 1$.

$$\begin{split} C-D\geqslant 0 &\Rightarrow C\geqslant D \;.\\ A-C\geqslant 0 &\Rightarrow A\geqslant C \;\Rightarrow\; A\geqslant D \;.\\ 0\leqslant B+C-A-D\leqslant B-D &\Rightarrow B\geqslant D \;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 20 / 39

Note that the labeling $y_i=1,\ y_j=0$ is not possible in this case, since

$$C - A \geqslant 0 \Rightarrow C \geqslant A$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 21 / 39

Assume that $\min\{C-A,B+C-A-D,C-D\}=C-A.$

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 1$.

$$\begin{split} C-A \leqslant B+C-A-D &\Rightarrow 0 \leqslant B-C \Rightarrow B \geqslant D \;. \\ C-A \geqslant C-D &\Rightarrow A \geqslant D \;. \\ C-D \geqslant 0 &\Rightarrow C \geqslant D \;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 22 / 39

Assume that $\min\{C-A,B+C-A-D,C-D\}=B+C-A-D.$

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = 0$, $y_j = 1$.

$$\begin{split} B+C-A-D\leqslant C-A &\Rightarrow B\leqslant D\;.\\ B+C-A-D\geqslant C-D &\Rightarrow B\leqslant A\;.\\ C-A\geqslant 0 &\Rightarrow A\leqslant C \Rightarrow B\leqslant C\;. \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 23 / 39

Assume that $\min\{C-A,B+C-A-D,C-D\}=C-D.$

$$E_{ij} \quad y_j = 0 \quad y_j = 1$$

$$y_i = 0 \quad A \quad B$$

$$y_i = 1 \quad C \quad D$$

Labeling: $y_i = y_j = 0$.

$$C-D\leqslant B+C-A-D \Rightarrow B\geqslant A$$
.
$$C-D\leqslant C-A \Rightarrow D\geqslant A$$
.
$$C-D\geqslant 0 \Rightarrow C\geqslant D \Rightarrow C\geqslant A$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 24 / 39

$$\begin{array}{c|ccc}
E_{ij} & y_j = 0 & y_j = 1 \\
\hline
y_i = 0 & A & B \\
y_i = 1 & C & D
\end{array}$$

Labeling: $y_i = 1$, $y_j = 0$.

$$\begin{split} D-C\geqslant 0 &\Rightarrow D\geqslant C\;.\\ A-C\geqslant 0 &\Rightarrow A\geqslant C\;.\\ 0\leqslant B+C-A-D\leqslant B-A &\Rightarrow B\geqslant A \Rightarrow B\geqslant C\;. \end{split}$$

All the other cases can be similarly derived.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 25 / 39

Graph construction

Putting all together we get that

Unaries

Pairwise

Overall energy

$$\underset{\mathbf{y}}{\operatorname{argmin}} E_i(y_i) + E_j(y_j)$$

 $\underset{\mathbf{y}}{\operatorname{argmin}} E_{ij}(y_i, y_j)$

 $\underset{\mathbf{y}}{\operatorname{argmin}} E_i(y_i) + E_j(y_j)$

 $+ E_{ij}(y_i, y_j)$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms -26 / 39

Remarks

Regularity is an *extremely important* property as is allows to minimize energy functions by making use of graph cut. Moreover, without the regularity constraint, the problem become intractable.

Let E_2 be a nonregular function of two binary variables. Then minimizing the energy function

$$E(y_1, ..., y_n) = \sum_i E_i(y_i) + \sum_{i < j} E_2(y_i, y_j),$$

where E_i are arbitrary functions of one binary variable, is NP-hard.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 27 / 39

Multi-label problem

28 / 39

Multi-label problem

We define a label set $\mathcal{L} = \{1, 2, \dots, L\}$, where L is a (finite) constant. Therefore the output domain is defined as $\mathcal{Y} = \mathcal{L}^{\mathcal{V}}$. The energy function has the following form

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; \mathbf{x}) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j; \mathbf{x}) ,$$

where x consists of an input image.

In order to ease to notation we will omit ${\bf x}$ and define the energy function simply as

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 29 / 39

Metric *

A function $d: \mathcal{L} \times \mathcal{L} \to \mathbb{R}^+$ is called a **metric** if the following properties are satisfied:

- 1. Identity of indiscernibles: $d(\ell_1, \ell_2) = 0 \quad \Leftrightarrow \quad \ell_1 = \ell_2 \text{ for all } \ell_1, \ell_2 \in \mathcal{L}.$
- 2. Symmetry: $d(\ell_1,\ell_2) = d(\ell_2,\ell_1)$ for all $\ell_1,\ell_2 \in \mathcal{L}$.
- 3. Triangle inequality: $d(\ell_1, \ell_3) \leq d(\ell_1, \ell_2) + d(\ell_2, \ell_3)$ for all $\ell_1, \ell_2, \ell_3 \in \mathcal{L}$.

Example: the **truncated absolute distance** $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $d(x,y) = \min(K,|x-y|)$ is a *metric*, where K is some constant. (See Exercise)

If a function $d: \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ satisfies the first two properties (i.e. identity of indiscernibles and symmetric), then it is called **semi-metric**.

Example: the truncated quadratic function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $d(x,y) = \min(K, |x-y|^2)$ is a *semi-metric*, where K is some constant. (See Exercise)

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 30 / 39

lpha-eta swap

 $\alpha - \beta$ swap

 $\alpha - \beta$ swap changes the variables that are labeled as $\ell \in \{\alpha, \beta\}$. Each of these variables can choose either α or β . We introduce the following notation

$$\mathcal{Z}_{\alpha\beta}(\mathbf{y},\alpha,\beta) = \{\mathbf{z} \in \mathcal{Y} : z_i = y_i, \text{ if } y_i \notin \{\alpha,\beta\}, \text{ otherwise } z_i \in \{\alpha,\beta\}\}$$
.

The minimization of the energy function E can be reformulated as follows:

$$\mathbf{z}^* \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} E(\mathbf{z}) = \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \sum_{i \in \mathcal{V}} E_i(z_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(z_i, z_j)$$

$$= \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \left[\underbrace{\sum_{i \in \mathcal{V}, y_i \notin \{\alpha, \beta\}} E_i(y_i)}_{\text{constant}} + \underbrace{\sum_{i \in \mathcal{V}, y_i \in \{\alpha, \beta\}} E_i(z_i)}_{\text{unary}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j)}_{y_i \in \{\alpha, \beta\}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(z_i, y_j)}_{y_i \in \{\alpha, \beta\}, y_j \notin \{\alpha, \beta\}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, z_j)}_{y_i, y_j \in \{\alpha, \beta\}} + \underbrace{\sum_{(i,j) \in \mathcal{E}} E_{ij}(z_i, z_j)}_{y_i, y_j \in \{\alpha, \beta\}} \right].$$
constant

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 32 / 39

Local optimization

Let us consider $E_{ij}(z_i, z_j)$ for a given $(i, j) \in \mathcal{E}$:

E_{ij}	α	β
α	$E_{ij}(\alpha,\alpha)$	$E_{ij}(\alpha,\beta)$
β	$E_{ij}(\beta,\alpha)$	$E_{ij}(\beta,\beta)$

If we assume that $E_{ij}: \mathcal{L} \times \mathcal{L} \to \mathbb{R}$ is a semi-metric for each $(i, j) \in \mathcal{E}$, then

$$E_{ij}(\alpha,\alpha) + E_{ij}(\beta,\beta) = 0 \leq E_{ij}(\alpha,\beta) + E_{ij}(\beta,\alpha) = 2E_{ij}(\alpha,\beta)$$
,

which means that E_{ij} is **regular** w.r.t. the labeling $\mathcal{Z}_{\alpha\beta}(\mathbf{y},\alpha,\beta)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 33 / 39

Graph construction for semi-metrics

Let us consider the following binary energy function:

$$E(\mathbf{z}) = E_i(z_i) + E_j(z_j) + E_{ij}(z_i, z_j) ,$$

where E_{ij} is assumed to be a *semi-metric*.

Since E_{ij} is a *semi-metric*, we can construct a flow for $E(\mathbf{y})$ as follows:

 $E_i(1) + E_j(1)$

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 34 / 39

Graph construction: t-links

t-links

We need to minimize the following regular energy function:

$$\mathbf{z}^* \in \underset{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}, \alpha, \beta)}{\operatorname{argmin}} \sum_{\substack{i \in \mathcal{V} \\ y_i \in \{\alpha, \beta\}}} E_i(z_i) + \sum_{\substack{(i,j) \in \mathcal{E} \\ y_i \in \{\alpha, \beta\}, y_j \notin \{\alpha, \beta\}}} E_{ij}(z_i, y_j) + \sum_{\substack{(i,j) \in \mathcal{E} \\ y_i \notin \{\alpha, \beta\}, y_j \in \{\alpha, \beta\}}} E_{ij}(y_i, z_j) + \sum_{\substack{(i,j) \in \mathcal{E} \\ y_i, y_j \in \{\alpha, \beta\}}} E_{ij}(z_i, z_j).$$

Based on construction applied for binary image segmentation, we can also define a flow network $(\mathcal{V}', \mathcal{E}', c, \alpha, \beta)$, where $\mathcal{V}' = \{\alpha, \beta\} \cup \{i \in \mathcal{V} : y_i \in \{\alpha, \beta\}\}$ and $\mathcal{E}' = \{(\alpha, i), (i, \beta) \mid i \in \mathcal{V}' \setminus \{\alpha, \beta\}\} \cup \{(i, j), (j, i) \mid i, j \in \mathcal{V}' \setminus \{\alpha, \beta\}, (i, j) \in \mathcal{E}\}$.

 $c(\alpha,i) = E_i(\beta) + \sum_{\substack{(i,j) \in \mathcal{E}, y_j \notin \{\alpha,\beta\} \\ E_i(0) \\ E_i($

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 35 / 39

Graph construction: n-links

n-links: for all $(i, j) \in \mathcal{E}$, where $i, j \in \mathcal{V}' \setminus \{\alpha, \beta\}$

$$c(i,j) = c(j,i) = E_{ij}(\alpha,\beta)$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms - 36 / 39

$\alpha-\beta$ swap algorithm *

Input: An energy function $E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i,y_j)$ to be minimized, where E_{ij} is a semi-metric for each $(i,j) \in \mathcal{E}$

Output: A local minimum $\mathbf{y} \in \mathcal{Y} = \mathcal{L}^{\mathcal{V}}$ of $E(\mathbf{y})$

- 1: Choose an arbitrary initial labeling $\mathbf{y} \in \mathcal{Y}$
- 2: $\mathbf{y}^* \leftarrow \mathbf{y}$
- 3: for all $(\alpha, \beta) \in \mathcal{L} \times \mathcal{L}$ do
- 4: find $\mathbf{z}^* \in \operatorname{argmin}_{\mathbf{z} \in \mathcal{Z}_{\alpha\beta}(\mathbf{y}^*, \alpha, \beta)} E(\mathbf{z})$
- 5: $\mathbf{y}^* \leftarrow \mathbf{z}^*$
- 6: end for
- 7: if $E(\mathbf{y}^*) < E(\mathbf{y})$ then
- 8: $\mathbf{y} \leftarrow \mathbf{y}^*$
- 9: Goto Step 2
- 10: end if

 $\alpha - \beta$ swap algorithm is guaranteed to terminate in a finite number of cycles. This algorithm computes at least $|\mathcal{L}|^2$ graph cuts, which may take a lot of time, even for moderately large label spaces.

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 37 / 39

Summary *

 \blacksquare A binary energy function E consisting of up to pairwise functions is **regular**, if for each term E_{ij} for all i < j satisfies

$$E_{ij}(0,0) + E_{ij}(1,1) \leq E_{ij}(0,1) + E_{ij}(1,0)$$
.

- The minimization of regular energy functions can be achieved via minCut-maxFlow.
- lacktriangle The multi-label problem for a finite label set ${\cal L}$

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; \mathbf{x}) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j; \mathbf{x}) ,$$

can be approximately solved by applying $\alpha - \beta$ swap, if E_{ij} is semi-metric.

In the next lecture we will learn about

- \blacksquare α -expansion: approximate solution for the multi-label problem, if E_{ij} is metric
- FastPD algorithm: linear programming relaxation for multi-label problem

Literature *

- 1. Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of Min-cut/Max-flow algorithms for energy minimization in vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(9):1124–1137, September 2004
- 2. Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts? *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(2):147–159, February 2004
- 3. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(11):1222–1239, November 2001
- 4. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms – 39 / 39