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5. Move making algorithms 2 /39

Agenda for today’s lecture *

In the previous lecture we learnt about the minimum s — ¢ cut problem

Today we are going to learn about

B The Boykov—Kolmogorov algorithm
B Exact solution for binary image segmentation via graph cut
B Approximate solution for the multi-label problem via o — § swap
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Boykov—Kolmogorov algorithm 4 /39

Boykov—Kolmogorov algorithm
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B Main idea: Never start building an augmenting path from scratch
B Two non-overlapping search trees S and T" with roots at the terminals
B The edges of the trees are non-saturated, i.e. f(i,7) < c(i,7)
B Active nodes: @ @
B Passive nodess O QO
B Free nodes: O
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Boykov—Kolmogorov algorithm
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: while true do

1

2 grow S or T to find an augmenting path P from s to t
3 if P = & then

4: terminate

5 end if

6 augment on P

7 adopt orphans

8: end while
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Growth stage
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B The active nodes explore adjacent edges and acquire new children from a set of free nodes

B The newly acquired nodes become active members of the corresponding search trees

B The active node becomes passive, when all of its neighbors are explored

B If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

IN2329 - Probabilistic Graphical Models in Computer Vision

5. Move making algorithms — 7 / 39



Augmentation stage

B Find the bottleneck capacity A on P
B Update the residual graph by pushing flow A through P
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Adoption stage

m  Orphan (O Q): the nodes such that the edges linking them to their parents are no longer valid (i.e. they are saturated)
B By removing them the search trees S and T' may be split into forests

We are trying to find a new valid parent for p among its neighbors, such that a new parent should belong to the same set, S or T, as the orphan
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Adoption stage

If an orphan p does not find a valid parent then it becomes a free node

O=O=O=O=@=0=0

Scan all neighbors ¢ of p such that ¢ belong to the same tree as p:

B if tree ¢(q,p) > 0, add ¢ to the active set
B if parent(q) = p, add q to the set of orphans and set parent(q) = J
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Complexity

B The Boykov-Kolmogorov algorithm is also an augmented path-based method with worst case complexity O(|€] - |V|? - |C|), where |C| is the capacity of
the minimum cut.

B This complexity is worse than complexities of Edmonds—Karp algorithm, however, this algorithm significantly (~2-10x) outperforms standard algorithms
on typical problem instances in vision.
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Binary image segmentation 12 / 39

Regular functions *

Let us consider a function f of two binary variables, then f is called regular, if it satisfies the following inequality

£(0,0) + f(1,1) < f(0,1) + f(1,0) .

Example: the Potts-model is regular, since
0#0]+[1#1]=0<2=[0#1]+[1#0].
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Regular energy functions

Let us consider an energy function E of n binary variables which can be written as the sum of functions of up to two variables, that is £ : B” — R

By, ... yn) = ZEi(yi) + > By y;) -

1<j
E is regular, if each term E;; : B2 — R for all i < j satisfies

E;;(0,0) + E;(1,1) < E;;(0,1) + E;5(1,0) .

If each term E;; is regular, then it is possible to find the global minimum of £ in polynomial time by solving a minimum s —t cut problem.
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Binary image segmentation
We have already seen that binary image segmentation can be reformulated as the minimization of an energy function E : BY x X — R:
E(y;x) = Y Ei(yisz) + Y, w-[yi # ] -
i€V (3,9)e€

where V corresponds to the output variables, i.e. the pixels, and £ includes the pairs of 4-neighboring pixels.
Assume probability densities f,s and fr; estimated for the background and the foreground, respectively. The unary energies [; for all i € V can be defined
as
EZ(07 .’L‘Z) =0 ;
fbg(mi)
ffg(xi)
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EZ(17 .I‘Z) = lOg

Energy minimization via minimum s — ¢ cut

Let us consider the following example

F; F;
Through this example we illustrate how to minimize regular energy functions consisting of up to pairwise relationships. In our example y € B? and E(y) is
defined as
E(y) = E1(y1) + Ea(y2) + Era(y1, y2) -
We will create a flow network (V u {s,t},&’ ¢, s,t) such that the minimum s — ¢ cut will correspond to the minimization of our energy function
E(y), where the labeling for each i € V is defined as
{0, ifies,
Yi =

1, ifieT.
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Graph construction: unary energies

Let us consider the unary energy function F; : {0,1} — R.

Obviously, the minimum s — ¢ cut of the flow network will correspond to
Ei(1)

argmin E;(y;) .
yie{ovl}

When E;(1) > E;(0) holds, then we can write
E;(1) — E;(0)

argmin F;(y;) = argmin E;(y;) — E£;(0) .

y;€{0,1} y:€{0,1} | | @
®
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Graph construction: pairwise energy

Let us consider the pairwise energy function E;;(y;,y;) : B> — R. The possible values of E;;(y;,y;)

are shown in the table:

We furthermore assume that E;;(y;, y;) is regular, that is

Let us note that E;;(y;,y;) can be decomposed as:

A

B

C

D

—A+

—A+

Ez-j((], 0) + Ez‘j(l, 1) SEZ‘j(O, 1) + Eij(l, 0)

A+ D <B+C.

0 [B-A]_, . [ 0 0|, [0[B-4
C—A|D—-A| C-—A|C-A 0|D-C
0 0 . 0|D-C 0| B+C—-A-D

C—-AIC-A 0|D-C 0 0
£:(1) E;(1) B+C—A-D>0
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Graph construction: pairwise energy, C —A>0,D—-C >0 *

Labeling: y; = y; = 0.

WY Q
\YARR\VARA\Y
O
|
T
\Y
b
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Graph construction: pairwise energy, A—C >0,C—-D >0 *

yi =0 A B
yi =1 C D
Labeling: y; = y; = 1.
C-D>0=C=>=D.
A-C=20 =A=2C = A=D
0<B+C—-A-D<B-D =B>D.
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Graph construction: pairwise energy, C —A>0,C—-D >0 *

Note that the labeling ; = 1, y; = 0 is not possible in this case, since

C—A>0= C=A.
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Graph construction: pairwise energy, C —A>0,C—-D >0 *

Assume that min{C — A, B+ C —-A—-D,C—-D}=C—A.

yi =0 A B
yi =1 C D
Labeling: y; = y; = 1.
C—-A<B+C—-A-D =0<B-C = B=>=D
C—A=>C-D =A=D
C-D=20=C=>=D
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Graph construction: pairwise energy, C —A>0,C—-D >0 *

Assume that min{C — A, B+C —-A—-D,C—-D}=B+C—-A-D.

yi =0 A B
yi =1 C D
Labeling: y; = 0, y; = 1.
B+C—-A-D<C—-A=B<D.
B+C—-A-D>C—-D =B<A.
C—A>0 =A<C = B<C
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Graph construction: pairwise energy, C —A>0,C—-D >0 *

Assume that min{C — A, B+ C —-A—-D,C—-D}=C—D.

yi =0 A B
c-4 yi =1 C D
0 B+C—A-D 0
,’C—D
0}
Labeling: y; = y; = 0.
C-D<B+C—-A-D =B>A.
C-D<C-A=D=A.
C-D>0=C=>D = C=>=A
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Graph construction: pairwise energy, A—C >0, D—-C >0 *

yi =0 A B
yi =1 C D
Labeling: y; = 1, y; = 0.
D-C>=20=D=>=C
A-C=20=A=>C
0SKB+C—-A—-D<B-A=B>A= B>=C
All the other cases can be similarly derived.
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Graph construction

Putting all together we get that

Unaries Pairwise Overall energy

argmin B;(y;) + E;(y;) argmin F;; (y;, y;) argmin E;(y;) + Ej(y;)
Yy Yy y

+ Eii(yi, y;)

Ei(1) E;(1) E;(1)+D
E;(0) E;(0) 0)+C
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Remarks

Regularity is an extremely important property as is allows to minimize energy functions by making use of graph cut. Moreover, without the regularity
constraint, the problem become intractable.

Let F> be a nonregular function of two binary variables. Then minimizing the energy function

E(yi,...,yn) = ZEi(yi) + > Ea(yiy))

1<j

where E; are arbitrary functions of one binary variable, is NP-hard.
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Multi-label problem 28 / 39

Multi-label problem

We define a label set £ = {1,2,..., L}, where L is a (finite) constant. Therefore the output domain is defined as ) = LY. The energy function has the

following form
E(y;x) = ZEi(yi§X) + Z Eij(yi, y;3%)
€V (i,7)€€

where x consists of an input image.
In order to ease to notation we will omit x and define the energy function simply as

E(y) =), Eily)+ Y, Eylyiy)) -

i€V (4,5)e€
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Metric *

A function d : £ x L — R is called a metric if the following properties are satisfied:

1. Identity of indiscernibles: d(¢1,05) =0 < {3 = {5 forall {1,05€ L.
2. Symmetry: d(gl,fg) = d(gg,fl) for all £1,45 € L.
3. Triangle inequality: d({1,/03) < d(l1,02) + d(l2,l3) for all £1,05,05€ L.

Example: the truncated absolute distance d: R x R — R, d(z,y) = min(K, |z — y|) is a metric, where K is some constant. (See Exercise)

If a function d: £ x £ — R satisfies the first two properties (i.e. identity of indiscernibles and symmetric), then it is called semi-metric.

Example: the truncated quadratic function d : R x R — R, d(z,y) = min(K, |z — y|?) is a semi-metric, where K is some constant. (See Exercise)
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o — [ swap

31 /39

a — [ swap

The minimization of the energy function E can be reformulated as follows:

z*€ argmin F(z) = argmin ZEz(Zz)+ Z Eij (2, zj)

2€Z,4(y,a,0) 2€205(y,.0) jep (i,5)e€

= argmin [ Z Ei(yi) + Z Ei(z)

220 (¥:28) i, yig{a, ) iV, yie{a,8)
con;;ant unary

« — 3 swap changes the variables that are labeled as ¢ € {«, $}. Each of these variables can choose either o or 3. We introduce the following notation

Zaﬁ(y’a’ﬁ) = {Z € y L2 = Y, if Yi ¢ {awB}a otherwise Z; € {Oé,ﬁ}} .

+ ZEij(yiayj)+ Z Eij(zi, ;) + Z Eij(yi, z5) + ZEij(ZiaZj)]~

(.4)e€ (i,5)e€ (4,4)e€ (i.5)e€
yl>yj¢{a>6} yze{avﬁ}7y‘7¢{a>6} yl¢{a76}>yje{a>6} y27y]€{a7ﬁ}
con;;ant unary ur?arry pairwise
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ol

Local optimization

Let us consider E;;(z;, zj) for a given (i, j) € &:

E;; a B
a | Eijla,a) | Eijla,B)

which means that E;; is regular w.r.t. the labeling Z,5(y, o, ).

If we assume that F;; : L x L — R is a semi-metric for each (i, j) € £, then

Eij(a,a) + Eij(8,8) = 0 < Eij(a, B) + Eij (B, ) = 2E;5(a, B)

IN2329 - Probabilistic Graphical Models in Computer Vision
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Graph construction for semi-metrics

Let us consider the following binary energy function:
E(z) = Ei(z) + Ej(2) + Eij(2i, ) ,

where E;; is assumed to be a semi-metric.

El(%&jm

(=)

E;(0ONF (1) /E;(0)

<1>+Ew<0’1,>/@>\fj<1)
2E;;(0,1)

E;(0)+E;;(0,1)

Since E;; is a semi-metric, we can construct a flow for E(y) as follows:

E;(1)+ c—;x/GKfj(l)
B+C—A—D
Ei(O): /E;(0)+C—D

©

zi |z | E(=z)

0 0 E;(0)+E;(0)

0 1 | E;(0)+E;(1)+E;;(1,0)
1 0 | E;(1)+E;(0)+E;;(1,0)
1 1 E;(1)+E;(1)
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Graph construction: t-links
We need to minimize the following regular energy function:
z¥e argmin Z EZ(Z,L) + Z Eij(zi,yj) + Z Eij(yia Zj) + Z Eij(zi, Zj).
2€Z0p5(y,o08) ey (i,§)e€ (i,§)e€ (i,§)€E

vielaBl  yiefa,B}, y;¢{a,B} yit{o.B}, yje{a,B8} yi,yjefa,B)

Based on construction applied for binary image segmentation, we can also define a flow network (V', &', ¢, a, 8), where V' = {a, B} u{i € V : y; € {«, B}}
and &'={(a,1), (i, 8)[i € V\{ev, B} {(, 4), (4,9) [4,5 € V'\{v, B}, (i, ) € &}
t-links n-links

t-links: for all i € V'\{«, 8}

cloi) =Ei(B)+ >, EyBy)+ Y, Eiy;B)

(’L,])eg,’y]¢{0(,ﬁ} (j,Z)Eg,’y]¢{Oc,B}
c(i,B) =Ei() + Y, Eiylay)+ Y, Ejlysa)
(ivj)egvy]'¢{o‘76} (jvi)egvyj¢{o‘75}
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Graph construction: n-links
n-links: for all (i,7) € &€, where i, j € V'\{«, 5}

c(i,j) = c(j,i) = Eij(o, B) .
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a — (3 swap algorithm *

Input: An energy function E(y) = ey Ei(Yi) + 2 jjee Eij(i,y;) to be minimized, where Ej; is a semi-metric for each (i, j) € £

Output: A local minimum y € Y = LY of E(y)

: Choose an arbitrary initial labeling y €

LY ey

: for all (a,8) € L x L do
find 2* € argmin,c z_,(
y* — z*

end for

if E(y*) < E(y) then
y—y*
Goto Step 2

10: end if

o — (3 swap algorithm is guaranteed to terminate in a finite number of cycles. This algorithm computes at least |£|? graph cuts, which may take a lot of

time, even for moderately large label spaces.

)E(Z)

y¥,a,8

© o N T s R
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Summary *

B A binary energy function I consisting of up to pairwise functions is regular, if for each term E;; for all ¢ < j satisfies
E;ij(0,0) + E;;(1,1) < E;5(0,1) + E;;(1,0) .

B The minimization of regular energy functions can be achieved via minCut-maxFlow.

B The multi-label problem for a finite label set £
E(y;x) = ZEi(yi§X) + Z Eij(yi, y;3%)
eV (3,5)e€

can be approximately solved by applying o — 8 swap, if E;; is semi-metric.
In the next lecture we will learn about

B «-expansion: approximate solution for the multi-label problem, if E;; is metric
B fastPD algorithm: linear programming relaxation for multi-label problem
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