Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2017

FastPD & Branch—and—MinCut	2
astPD	3
	/
Recall: Primal-dual LP for the multi-label problem *	
Recall: Primai-dual schema '	5
Pseudo-code of the FastPD algorithm *	6
D1	7
Complementary slackness conditions *	8
Complementary slackness conditions *	9
Feasibility constraints *	. 10
Subroutine Init_Primals_Duals() *	
Update primal and dual variables	
Graph construction: n-links	
Graph construction: n-links	
Graph construction: t-links *	
Graph construction: t-links	. 16
Graph construction: t-links	. 17
Graph construction: t-links	18

Reassign rule	
Subroutine Update_Duals_Primals($lpha, x, y$) *	
Subroutine PostEdit_Duals $(\alpha, \mathbf{x}', \mathbf{y}')$ *	
The APF function *	
Summary st	23
PD2	24
Parameterization of the PD2 algorithm	25
Complementary slackness conditions *	26
Dual fitting	27
Update primal and dual variables	28
Subroutine PreEdit_Duals(α, x, y) *	29
Equivalence of PD2 $_{\mu=1}$ and α -expansion	30
Results: Stereo matching *	31
Branch-and-MinCut	32
Introduction	33
Globally optimal segmentation *	34
Lower bound	35
Monotonicity	36
Monotonicity	37
Computability and tightness	
Best-first branch-and-bound optimization	39
Best-first branch-and-bound optimization	40
Pseudo code of Branch-And-Mincut *	41
Segmentation with shape priors	42
Parameterization:multiple templates \times translations	43
Clustering tree	44
Branch operation	45
Results *	46
Summary *	47
Literature *	48

7. FastPD & Branch-and-MinCut

2 / 48

FastPD

3 / 48

Recall: Primal-dual LP for the multi-label problem *

The (relaxed) primal LP:

$$\begin{split} \min_{x_{i:\alpha}, x_{ij:\alpha\beta} \geqslant 0} \sum_{i \in \mathcal{V}} \sum_{\alpha \in \mathcal{L}} E_i(\alpha) x_{i:\alpha} + \sum_{(i,j) \in \mathcal{E}} w_{ij} \sum_{\alpha,\beta \in \mathcal{L}} d(\alpha,\beta) x_{ij:\alpha\beta} \\ \text{subject to} \quad \sum_{\alpha \in \mathcal{L}} x_{i:\alpha} &= 1 \qquad \forall i \in \mathcal{V} \\ \sum_{\alpha \in \mathcal{L}} x_{ij:\alpha\beta} &= x_{j:\beta} \quad \forall \beta \in \mathcal{L}, (i,j) \in \mathcal{E} \\ \sum_{\beta \in \mathcal{L}} x_{ij:\alpha\beta} &= x_{i:\alpha} \quad \forall \alpha \in \mathcal{L}, (i,j) \in \mathcal{E} \end{split}$$

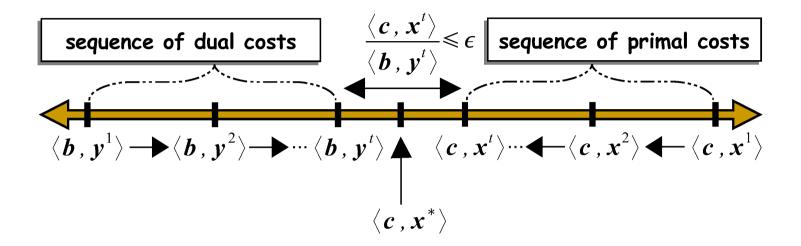
The dual LP:

$$\begin{split} \max_{y_i,y_{ij:\alpha},y_{ji:\beta}} \sum_{i \in \mathcal{V}} y_i \\ \text{subject to} \quad y_i - \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} y_{ij:\alpha} & \leqslant E_i(\alpha) \qquad \forall i \in \mathcal{V}, \alpha \in \mathcal{L} \\ y_{ij:\alpha} + y_{ji:\beta} & \leqslant w_{ij} d(\alpha,\beta) \quad \forall (i,j) \in \mathcal{E}, \alpha, \beta \in \mathcal{L} \end{split}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 4 / 48

Recall: Primal-dual schema *



Typically, primal-dual ϵ -approximation algorithms construct a sequence $(\mathbf{x}^k, \mathbf{y}^k)_{k=1,\dots,t}$ of primal and dual solutions until the elements \mathbf{x}^t , \mathbf{y}^t of the last pair are both **feasible** and **satisfy the relaxed primal complementary slackness conditions**, hence the condition $\langle \mathbf{c}, \mathbf{x} \rangle \leqslant \epsilon \langle \mathbf{b}, \mathbf{y} \rangle$ will be also fulfilled.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 5 / 48

```
Pseudo-code of the FastPD algorithm *
 1: [x \ y] \leftarrow Init\_Primals\_Duals()
 2: labelChange ← false
 3: for all \alpha \in \mathcal{L} do

ightharpoonup lpha-iteration
           y \leftarrow PreEdit_Duals(\alpha, x, y)
         [\mathbf{x}' \ \mathbf{y}'] \leftarrow \mathtt{Update\_Duals\_Primals}(lpha, \mathbf{x}, \mathbf{y})
         \mathbf{y}' \leftarrow \mathtt{PostEdit\_Duals}(\alpha, \mathbf{x}', \mathbf{y}')
           if x' \neq x then
                labelChange \leftarrow \mathsf{true}
           end if
           \mathbf{x} \leftarrow \mathbf{x}' and \mathbf{y} \leftarrow \mathbf{y}'
11: end for
12: if labelChange then
           goto 2
14: end if
15: y^{fit} \leftarrow Dual\_Fit(y)
```

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch–and–MinCut – 6 / 48

PD1

7 / 48

Complementary slackness conditions *

From now on, in case of Algorithm PD1, we only assume that $d(\alpha, \beta) = 0 \Leftrightarrow \alpha = \beta$, and $d(\alpha, \beta) \ge 0$ (i.e. d is a semi-metric).

The complementary slackness conditions reduces to

$$y_{i} - \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} y_{ij:x_{i}} \geqslant \frac{E_{i}(x_{i})}{\epsilon_{1}} \Rightarrow y_{i} \geqslant \frac{E_{i}(x_{i})}{\epsilon_{1}} + \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} y_{ij:x_{i}}$$
$$y_{ij:x_{i}} + y_{ji:x_{j}} \geqslant \frac{w_{ij}d(x_{i}, x_{j})}{\epsilon_{2}}$$

for specific values of $\epsilon_1, \epsilon_2 \geqslant 1$.

If $x_i = x_j = \alpha$ for neighboring pairs $(i, j) \in \mathcal{E}$, then

$$0 = w_{ij}d(\alpha, \alpha) \geqslant y_{ij:\alpha} + y_{ji:\alpha} \geqslant \frac{w_{ij}d(\alpha, \alpha)}{\epsilon_2} = 0 ,$$

therefore we get that $y_{ij:\alpha} = -y_{ji:\alpha}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 8 / 48

Complementary slackness conditions *

We have already known that $y_i = \min_{\alpha \in \mathcal{L}} h_i(\alpha)$. If $\epsilon_1 = 1$, then we get

$$y_i \geqslant \frac{E_i(x_i)}{\epsilon_1} + \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} y_{ij:x_i} = h_i(x_i) .$$

Therefore

$$h_i(x_i) = \min_{\alpha \in \mathcal{L}} h_i(\alpha) , \qquad (1)$$

which means that, at each vertex, the active label should have the lowest height.

If $\epsilon_2=\epsilon_{\sf app}:=rac{2d_{
m max}}{d_{
m min}}$, then the <code>complementary condition</code> simply reduces to:

$$y_{ij:x_i} + y_{ji:x_j} \geqslant \frac{w_{ij}d(x_i, x_j)}{\epsilon_{\mathsf{app}}} \,. \tag{2}$$

It requires that any two active labels should be raised proportionally to their "load".

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 9 / 48

Feasibility constraints *

To ensure feasibility of y, PD1 enforces for any $\alpha \in \mathcal{L}$:

$$y_{ij:\alpha} \leqslant w_{ij} d_{\min}/2$$
 where $d_{\min} = \min_{\alpha \neq \beta} d(\alpha, \beta)$ (3)

says that there is an upper bound on how much we can raise a label.

Hence, we get the feasibility condition

$$y_{ij:\alpha} + y_{ji:\beta} \leq 2w_{ij}d_{\min}/2 = w_{ij}d_{\min} \leq w_{ij}d(\alpha,\beta)$$
.

Moreover the algorithm keeps the active balance variables non-negative, that is $y_{ij:x_i} \ge 0$ for all $i \in \mathcal{V}$.

The proportionality condition (2) will be also fulfilled as
$$y_{ij:x_i}, y_{ji:x_j} \geqslant 0$$
 and if $y_{ij:x_i} = \frac{w_{ij}d_{\min}}{2}$, then
$$y_{ij:x_i} \geqslant \frac{w_{ij}d_{\min}}{2} \frac{d(x_i, x_j)}{d_{\max}} = \frac{w_{ij}d(x_i, x_j)}{\frac{2d_{\max}}{d_{\min}}} = \frac{w_{ij}d(x_i, x_j)}{\epsilon_{\mathsf{app}}} \;.$$

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 10 / 48

Subroutine Init_Primals_Duals() *

1: x is simply initialized by a random label assignment

2: for all $(i, j) \in \mathcal{E}$ with $x_i \neq x_j$ do

 $y_{ij:x_i} \leftarrow w_{ij}d(x_i,x_j)/2$ and $y_{ji:x_i} \leftarrow -w_{ij}d(x_i,x_j)/2$ $y_{ji:x_j} \leftarrow w_{ij}d(x_i,x_j)/2$ and $y_{ij:x_j} \leftarrow -w_{ij}d(x_i,x_j)/2$

5: end for

6: for all $i \in \mathcal{V}$ do

 $y_i \leftarrow \min_{\alpha \in \mathcal{L}} h_i(\alpha)$

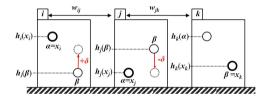
8: end for

9: **return** [**x y**]

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 11 / 48

Update primal and dual variables



Dual variables update: Given the current active labels, any non-active label is raised, until it either reaches the active label, or attains the maximum raise allowed by the upper bound defined in (3).

Primal variables update: Given the new heights, there might still be vertices whose active labels are not at the lowest height. For each such vertex i, we select a non-active label, which is below x_i , but has already reached the maximum raise allowed by the upper bound defined in (3).

The optimal update of the α -heights can be simulated by pushing the **maximum amount of flow** through a flow network $G' = (\mathcal{V} \cup \{s,t\}, \mathcal{E}', c, s, t)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 12 / 48

Graph construction: n-links

For each $(i, j) \in \mathcal{E}$, we insert two directed edges (i, j) and (j, i) into \mathcal{E}' .

The flow value f_{ij} , f_{ij} represent respectively the increase, decrease of balance variable $y_{ij:\alpha}$:

$$y'_{ij:\alpha} = y_{ij:\alpha} + f_{ij} - f_{ji}$$
 and $y'_{ji:\alpha} = -y'_{ij:\alpha}$.

According to (3), the capacities cap_{ij} and cap_{ij} are set based on

$$\mathsf{cap}_{ij} + y_{ij:\alpha} = \frac{1}{2} w_{ij} d_{\min} = \mathsf{cap}_{ji} + y_{ji:\alpha} \; .$$

$$cap_{ij} = \frac{1}{2} w_{ij} d_{min} - y_{ij:2}$$

$$cap_{ji} = \frac{1}{2} w_{ij} d_{min} - y_{ji:2}$$

IN2329 - Probabilistic Graphical Models in Computer Vision

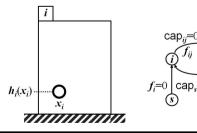
7. FastPD & Branch-and-MinCut - 13 / 48

Graph construction: n-links

If α is already the active label of i (or j), then label α at i (or j) need not move.

Therefore, $y'_{ij:\alpha}=y_{ij:\alpha}$ and $y'_{ji:\alpha}=y_{ji:\alpha}$, that is

$$x_i = \alpha \text{ or } x_j = \alpha \quad \Rightarrow \quad \mathsf{cap}_{ij} = \mathsf{cap}_{ji} = 0 \ .$$



IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 14 / 48

Graph construction: t-links *

Each node $i \in \mathcal{V}' \setminus \{s, t\}$ connects to either the source node s or the sink node t (but not to both of them).

There are three possible cases to consider:

Case 1 $(h_i(\alpha) < h_i(x_i))$: we want to raise label α as much as it reaches label x_i . We connect source node s to node i.

Due to the flow conservation property, $f_i = \sum_{j \in \mathcal{V}: (i,j) \in \mathcal{E}} (f_{ij} - f_{ji})$ assuming the more intuitive definition of flows (see Lecture 4).

The flow f_i through that edge will then represent the total relative raise of label α :

$$h_{i}(\alpha) + f_{i} = \left(E_{i}(\alpha) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:\alpha}\right) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} (f_{ij} - f_{ji})$$

$$= \left(E_{i}(\alpha) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y_{ij:\alpha}\right) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} \left(y'_{ij:\alpha} - y_{ji:\alpha}\right)$$

$$= E_{i}(\alpha) + \sum_{j \in \mathcal{V}:(i,j) \in \mathcal{E}} y'_{ij:\alpha} = h'_{i}(\alpha) .$$

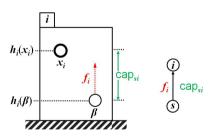
IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 15 / 48

Graph construction: t-links

We need to raise up the ball corresponding to the label α only as high as the current active label of i, but not higher than that, we therefore set:

$$\mathsf{cap}_{si} = h_i(x_i) - h_i(\alpha) \ .$$



IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 16 / 48

Graph construction: t-links

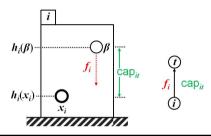
Case 2 $(h_i(\alpha) \ge h_i(x_i))$ and $c \ne x_i$: we can then afford a decrease in the height of α at i, as long as α remains above x_p .

We connect i to the sink node t through directed edge (i, t).

The flow f_i through edge it will equal the total relative decrease in the height of α :

$$h'_i(\alpha) = h_i(\alpha) - f_i$$

 $cap_{it} = h_i(\alpha) - h_i(x_i)$.



IN2329 - Probabilistic Graphical Models in Computer Vision

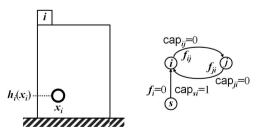
7. FastPD & Branch-and-MinCut - 17 / 48

Graph construction: t-links

Case 3 ($\alpha = x_i$): we want to keep the height of α fixed at the current iteration.

Note that the capacities of the *n*-edges for p are set to 0, since i has the active label. Therefore, $f_i = 0$ and $h'_{ij:\alpha} = h_{ij:\alpha}$.

By convention $cap_{ij} := 1$.



IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 18 / 48

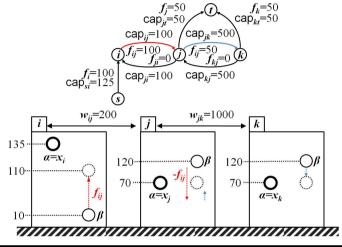
Reassign rule

Label α will be the new label of i (i.e. $x_i' = \alpha$) iff there exists unsaturated path (i.e. $f_{ij} < \mathsf{cap}_{ij}$) between the source node s and node i. In all other cases, ikeeps its current label (i.e. $x'_i = x_i$).

$$f_{ij} < \mathsf{cap}_{ij}$$

$$h'_i(\alpha) - h_i(\alpha) < h_i(x_i) - h_i(\alpha)$$

$$h'_i(\alpha) < h_i(x_i) = h'_i(x_i)$$



IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 19 / 48

Subroutine Update_Duals_Primals(α ,x,y) *

- 1: $\mathbf{x}' \leftarrow \mathbf{x}$ and $\mathbf{y}' \leftarrow \mathbf{y}$
- 2: Apply max-flow to G' and compute flows f_i , f_{ij}
- 3: for all $(i, j) \in \mathcal{E}$ do
- 4: $y'_{ij:\alpha} \leftarrow y_{ij:\alpha} + f_{ij} f_{ji}$ 5: **end for**
- 6: for all $i \in \mathcal{V}$ do
- $x_i \leftarrow \alpha \Leftrightarrow \exists \text{ unsaturated path } s \leadsto i \text{ in } G'$
- 8: end for
- 9: return $[\mathbf{x}' \ \mathbf{y}']$

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 20 / 48

Subroutine PostEdit_Duals(α , \mathbf{x}' , \mathbf{v}') *

The goal is to restore all active balance variables $y_{ij:x_i}$ to be non-negative.

- $1. \quad x_i' = \alpha \neq x_j': \text{ we have } \operatorname{cap}_{ij}, y_{ij:\alpha} \geqslant 0, \text{ therefore } y_{ij:\alpha}' = \operatorname{cap}_{ij} + y_{ij:\alpha} \geqslant 0 \ .$ $2. \quad x_i' = x_j' = \alpha: \text{ we have } y_{ij:\alpha}' = -y_{ji:\alpha}', \text{ therefore } \operatorname{load}_{ij}' = y_{ij:\alpha}' + y_{ji:\alpha}' = 0. \text{ By setting } y_{ij}'(\alpha) = y_{ji:\alpha}' = 0 \text{ we get } \operatorname{load}_{ij}' = 0 \text{ as well.}$

Note that none of the "load" were altered.

- 1: **function** PostEdit_Duals($\alpha, \mathbf{x}', \mathbf{y}'$)
- for all $(i,j) \in \mathcal{E}$ with $(x_i' = x_j' = \alpha)$ and $(y_{ij:\alpha}' < 0 \text{ or } y_{ji:\alpha}' < 0)$ do
- $y'_{ij:\alpha} \leftarrow 0 \text{ and } y'_{ii:\alpha} \leftarrow 0$ 3:
- end for
- for all $i \in \mathcal{V}$ do
- $y_i' \leftarrow \min_{\alpha \in \mathcal{L}} h_i'(\alpha)$
- end for 7:
- return \mathbf{v}'
- 9: end function

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 21 / 48

The APF function *

 $\mathsf{APF}^{\mathbf{x'},\mathbf{y'}} \leqslant \mathsf{APF}^{\mathbf{x},\mathbf{y}}$, where $\mathsf{APF}^{\mathbf{x},\mathbf{y}}$ is defined as

$$\begin{split} \mathsf{APF}^{\mathbf{x},\mathbf{y}} & \stackrel{\Delta}{=} \sum_{i \in \mathcal{V}} h_i(x_i) = \sum_{i \in \mathcal{V}} \left(E_i(x_i) + \sum_{j \in \mathcal{V}, (i,j) \in \mathcal{E}} \mathsf{load}_{ij}^{\mathbf{x},\mathbf{y}} \right) \\ & = \sum_{i \in \mathcal{V}} E_i(x_i) + \sum_{(i,j) \in \mathcal{E}} (y_{ij:x_i} + y_{ji:x_j}) \\ & \leqslant \sum_{i \in \mathcal{V}} E_i(x_i) + \sum_{(i,j) \in \mathcal{E}} w_{ij} d(x_i, x_j) = E(\mathbf{x}) \;. \end{split}$$

This condition shows that the algorithm terminates (assuming integer capacities), due to the reassign rule, which ensures that a new active label has always lower height than the previous active label, i.e. $h'_i(x'_i) \leq h_i(x_i)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 22 / 48

Summary *

In summary, one can see that PD1 always leads to an ϵ -approximate solution:

Theorem 1. The final primal-dual solutions generated by PD1 satisfy

- 1. $h_i(x_i) = \min_{\alpha \in \mathcal{L}} h_i(\alpha)$ for all $i \in \mathcal{V}$,
- 2. $x_i \neq x_j \Rightarrow load_{ij} \geqslant \frac{w_{ij}d(x_i,x_j)}{\epsilon_{app}}$ for all $(i,j) \in \mathcal{E}$,
- 3. $y_{ij:\alpha} \leqslant \frac{w_{ij}d_{\min}}{2}$ for all $(i,j) \in \mathcal{E}$ and $\alpha \in \mathcal{L}$,

and thus they satisfy the relaxed complementary slackness conditions with $\epsilon_1=1$, $\epsilon_2=\epsilon_{\sf app}=\frac{2d_{\max}}{d_{\min}}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 23 / 48

PD2

24 / 48

Parameterization of the PD2 algorithm

We now assume that d is a *metric*.

In fact, PD2 represents a family of algorithms parameterized by $\mu \in \left[\frac{1}{\epsilon_{\mathrm{app}}}, 1\right]$. Algorithm PD2 $_{\mu}$ will achieve complementary slackness conditions with

$$\epsilon_1 \stackrel{\Delta}{=} \mu \epsilon_{\sf app} \geqslant rac{1}{\epsilon_{\sf app}} \epsilon_{\sf app} \geqslant 1 \quad {\sf and} \quad \epsilon_2 = \epsilon_{\sf app} \; .$$

Algorithm PD1 always generates a feasible dual solution at any of its inner iterations, whereas PD2 $_{\mu}$ may allow any such dual solution to become infeasible.

Dual-fitting: $PD2_{\mu}$ ensures that the (probably infeasible) final dual solution is "not too far away from feasibility", which practically means that if that solution is divided by a suitable factor, it will become feasible again.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 25 / 48

Complementary slackness conditions *

Similarly to Algorithm PD1, the following equalities will hold for $i \in \mathcal{V}$

$$y_i = \min_{\alpha \in \mathcal{L}} h_i(\alpha) = h_i(x_i) \stackrel{\Delta}{=} E_i(x_i) + \sum_{i \in \mathcal{V}, (i,j) \in \mathcal{E}} y_{ij:x_i}$$
.

 $\mathtt{PD2}_{\mu}$ generates a series of intermediate pairs satisfying *complementary slackness conditions* for $\epsilon_1\geqslant 1$ and $\epsilon_2\geqslant \frac{1}{\mu}=\frac{1}{1/\epsilon_{\mathsf{app}}}=\epsilon_{\mathsf{app}}$:

$$\frac{E_i(x_i)}{\epsilon_1} + \sum_{i \in \mathcal{V}, (i,j) \in \mathcal{E}} y_{ij:x_i} \leqslant E_i(x_i) + \sum_{i \in \mathcal{V}, (i,j) \in \mathcal{E}} y_{ij:x_i} \stackrel{\triangle}{=} h_i(x_i) = y_i \qquad \forall i \in \mathcal{V} .$$

$$\frac{w_{ij}d(x_i, x_j)}{\epsilon_2} \leqslant \mu \cdot w_{ij} \cdot d(x_i, x_j) = \mathsf{load}_{ij}^{\mathbf{x}, \mathbf{y}} \qquad \forall (i,j) \in \mathcal{E} .$$

Like PD1, PD2 $_{\mu}$ also maintains non-negativity of active balance variables.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 26 / 48

Dual fitting

Instead of the feasibility conditions $y_{ij:\alpha} + y_{ji:\beta} \leqslant w_{ij}d(\alpha,\beta)$, PD2_{μ} maintains the conditions

$$y_{ij:\alpha} + y_{ji:\beta} \leq 2\mu w_{ij} d_{\max} \qquad \forall (i,j) \in \mathcal{E}, \ \forall \alpha, \beta \in \mathcal{L} \ .$$

Therefore, the dual solution of the last intermediate pair may be infeasible.

However, these conditions ensure that the last dual solution y, is not "too far away from feasibility". By replacing y with $y^{\text{fit}} = \frac{y}{\mu \epsilon_{\text{app}}}$ we get that

$$y_{ij:\alpha}^{\mathsf{fit}} + y_{ji:\beta}^{\mathsf{fit}} = \frac{y_{ij:\alpha} + y_{ji:\beta}}{\mu \epsilon_{\mathsf{app}}} \leqslant \frac{2\mu w_{ij} d_{\max}}{\mu \epsilon_{\mathsf{app}}} = \frac{2\mu w_{ij} d_{\max}}{\mu 2 d_{\max} / d_{\min}} = w_{ij} d_{\min} \leqslant w_{ij} d(\alpha, \beta).$$

This means that y^{fit} is **feasible**.

- 1: function Dual_Fit(y)
- 2: return $\mathbf{y}^{\text{fit}} \leftarrow \frac{\mathbf{y}}{\mu \epsilon_{\text{app}}}$ 3: end function

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 27 / 48

Update primal and dual variables

The main/only difference in the subroutine Update_Duals_Primals(α ,x,y) is the definition of the capacities corresponding to the *n*-edges. More precisely, assuming an α -iteration, where $x_i = \beta \neq \alpha$ and $x_j = \gamma \neq \alpha$ for a given $(i,j) \in \mathcal{E}$:

$$cap_{ij} = \mu w_{ij} (d(\beta, \alpha) + d(\alpha, \gamma) - d(\beta, \gamma)) \geqslant 0 ,$$

$$cap_{ji} = 0 .$$
(4)

All the capacities in the flow network must be non-negative. This motivates that d must be a metric.

By applying load $\mathbf{x},\mathbf{y} = y_{ij:\beta} + y_{ji:\gamma} = \mu w_{ij}d(\beta,\gamma)$ one can get

$$\begin{split} y'_{ij:\alpha} &= y_{ij:\alpha} + \mathsf{cap}_{ij} = y_{ij:\alpha} + \mu w_{ij} (d(\beta,\alpha) + d(\alpha,\gamma) - d(\beta,\gamma)) \\ &= y_{ij:\alpha} + (y_{ij:\beta} + y_{ji:\alpha}) + \mu w_{ij} d(\alpha,\gamma) - (y_{ij:\beta} + y_{ji:\gamma}) = \mu w_{ij} d(\alpha,\gamma) - y_{ji:\gamma} \;, \end{split}$$

which ensures that

$$\mathsf{load}_{ij}^{\mathbf{x},\mathbf{y}} = y_{ij:\alpha} + y_{ji:\gamma} = \left(\mu w_{ij} d(\alpha, \gamma) - y_{ji:\gamma}\right) + y_{ji:\gamma} = \mu w_{ij} d(\alpha, \gamma) \ .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 28 / 48

Subroutine PreEdit_Duals(α ,x,v) *

The role of this routine is to edit current solution y, before the subroutine Update_Duals_Primals(α ,x), so that

$$load_{ij}^{\mathbf{x},\mathbf{y}} = y_{ij:\alpha} + y_{ji:\gamma} = \mu w_{ij} d(\alpha,\gamma)$$
.

- 1: function Preedit_Duals($\alpha, \mathbf{x}, \mathbf{y}$)
- 2: **for all** $(i,j) \in \mathcal{E}$ with $x_i \neq \alpha$, $x_j \neq \alpha$ **do**
- 3: $y_{ij:\alpha} \leftarrow \mu w_{ij} d(\alpha, \gamma) y_{ji:\gamma}$
- 4: $y_{ji:\alpha} \leftarrow y_{ji:\gamma} \mu w_{ij} d(\alpha, \gamma)$
- 5: end for
- 6: **return** y
- 7: end function

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 29 / 48

Equivalence of PD2 $_{u=1}$ and α -expansion

One can show that $PD2_{\mu=1}$ indeed generates an ϵ_{app} solution.

If $\mu=1$, then $\mathrm{load}_{ij}^{\mathbf{x},\mathbf{y}}=w_{ij}d(x_i,x_j)$. It can be shown that $\mathrm{APF}^{\mathbf{x},\mathbf{y}}=E(\mathbf{x})$, whereas in any other case $\mathrm{APF}^{\mathbf{x},\mathbf{y}}\leqslant E(\mathbf{x})$.

If μ < 1, then the primal (dual) objective function necessarily decreases (increases) per iteration. Instead, APF constantly decreases.

Recall that APF is the sum of active labels' heights and PD2_{$\mu=1$} always tries to choose the *lowest* label among x_i and α . During an α -iteration, PD2_{$\mu=1$} chooses an \mathbf{x}' that minimizes APF with respect to any other α -expansion $\bar{\mathbf{x}}$ of current solution \mathbf{x} .

Theorem 2. Let $(\mathbf{x}', \mathbf{y}')$ denote the next primal-dual pair due to an α -iteration and let $\bar{\mathbf{x}}$ denote α -expansion of the current primal. Then

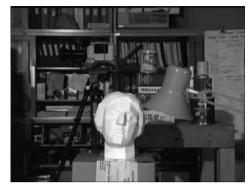
$$E(\mathbf{x}') = APF^{\mathbf{x}',\mathbf{y}'} \leqslant APF^{\bar{\mathbf{x}},\mathbf{y}'} \leqslant E(\bar{\mathbf{x}}).$$

 $E(\mathbf{x}') \leq E(\bar{\mathbf{x}})$ shows that the α -expansion algorithm is equivalent to PD2 $_{\mu=1}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 30 / 48

Results: Stereo matching *



Original (left)

PD1

 $\mathtt{PD2}_{\mu=1}$ with Potts

Remark: By modifying the Algorithm PD2 $_{\mu=1}$, one could get Algorithm PD3, which can be applied even if d is a non-metric function.

Distance $d(\alpha, \beta)$	$\epsilon_{\sf app}^{\sf PD1}$	$\epsilon_{app}^{PD2_{\mu=1}}$	$\epsilon_{\sf app}^{PD3_a}$	$\epsilon_{app}^{PD3_b}$	$\epsilon_{\sf app}^{PD3_c}$	$\epsilon_{\sf app}$
		1.0058				
$\min(5, \alpha - \beta)$	1.0226	1.0104	1.0104	1.0104	1.0104	10
$\min(5, \alpha - \beta ^2)$	1.0280	-	1.0143	1.0158	1.0183	10

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 31 / 48

Branch-and-MinCut 32 / 48

Introduction

We address the problem of binary image segmentation, where we also consider non-local parameters that are known a priori.

For example, one can assume prior knowledge about the **shape** of the foreground segment or the **color distribution** of the foreground and/or background.

Let us consider an undirected graphical model $G = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of pixels and \mathcal{E} consists of 8-connected pairs of pixels. We define the energy function $E : \mathbb{B}^{\mathcal{V}} \times \Omega \to \mathbb{R}$ for non-local parameter $\omega \in \Omega$:

$$E(\mathbf{y}, \omega) = C(\omega) + \sum_{i \in \mathcal{V}} F^{i}(\omega) \cdot y_{i} + \sum_{i \in \mathcal{V}} B^{i}(\omega) \cdot (1 - y_{i}) + \sum_{(i,j) \in \mathcal{E}} P^{ij}(\omega) \cdot |y_{i} - y_{j}|,$$

where $C(\omega)$ is a constant energy w.r.t. \mathbf{y} , and $F^i(\omega)$ and $B^i(\omega)$ are the unary energies defining the cost of assigning the pixel i to the foreground and to the background, respectively. $P^{ij}(\omega) \in \mathbb{R}^+_0$ is **non-negative** for each $(i,j) \in \mathcal{E}$ ensuring the tractability of $E(\mathbf{x},\omega)$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 33 / 48

Globally optimal segmentation *

The segmentation is given by a binary labeling $\mathbf{y} \in \mathbb{B}^{\mathcal{V}} = \{0,1\}^{\mathcal{V}}$, where 1 and 0 denote the background and the foreground, respectively. We also assume that the *non-local parameter* $\omega \in \Omega$ are taken from a **discrete set**.

Shape priors can be encoded as a product space of various poses and deformations of the *template*, while color priors will correspond to the set of parametric color distributions.

The goal is to achieve a **globally optimal** segmentation under non-local priors. The applied optimization method relies on two techniques: **branch-and-bound** and **graph cuts**.

Although a global minimum can be achieved, the worst case complexity of the method is large (essentially, the same as the exhaustive search over the space of non-local parameters).

An alternative way to solve the problem is to apply alternating minimization.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 34 / 48

Lower bound

Let $L(\Omega)$ denote the *lower bound* for $E(\mathbf{y}, \omega)$ over $\mathbb{B}^{\mathcal{V}} \times \Omega$:

$$\begin{aligned} & \min_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}, \omega \in \Omega} E(\mathbf{y}, \omega) \\ &= \min_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}, \omega \in \Omega} \left\{ C(\omega) + \sum_{i \in \mathcal{V}} F^{i}(\omega) \cdot y_{i} + \sum_{i \in \mathcal{V}} B^{i}(\omega) \cdot (1 - y_{i}) + \sum_{(i,j) \in \mathcal{E}} P^{ij}(\omega) \cdot |y_{i} - y_{j}| \right\} \\ &\geqslant \min_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} \left\{ \min_{\omega \in \Omega} C(\omega) + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega} F^{i}(\omega) \cdot y_{i} + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega} B^{i}(\omega) \cdot (1 - y_{i}) + \sum_{(i,j) \in \mathcal{E}} \min_{\omega \in \Omega} P^{ij}(\omega) \cdot |y_{i} - y_{j}| \right\} \\ &= \min_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} \left\{ C_{\Omega} + \sum_{i \in \mathcal{V}} F_{\Omega}^{i}(\omega) \cdot y_{i} + \sum_{i \in \mathcal{V}} B_{\Omega}^{i}(\omega) \cdot (1 - y_{i}) + \sum_{(i,j) \in \mathcal{E}} P_{\Omega}^{ij}(\omega) \cdot |y_{i} - y_{j}| \right\} \\ &= L(\Omega) \ . \end{aligned}$$

 C_{Ω} , F_{Ω}^{i} , B_{Ω}^{i} and P_{Ω}^{ij} denote the minima of $C(\omega)$, $F^{i}(\omega)$, $B^{i}(\omega)$ and $P^{ij}(\omega)$, respectively, over $\omega \in \Omega$ and they are referred to as **aggregated energies**.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 35 / 48

Monotonicity

Suppose $\Omega_1 \subset \Omega_2$, then the inequality $L(\Omega_1) \geqslant L(\Omega_2)$ holds.

Proof. Let us define $A(\mathbf{y}, \Omega)$ as

$$A(\mathbf{y}, \Omega) \stackrel{\Delta}{=} \min_{\omega \in \Omega} C(\omega) + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega} F^{i}(\omega) \cdot y_{i} + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega} B^{i}(\omega) \cdot (1 - y_{i})$$
$$+ \sum_{(i,j) \in \mathcal{E}} \min_{\omega \in \Omega} P^{ij}(\omega) \cdot |y_{i} - y_{j}|.$$

Assume $\Omega_1 \subset \Omega_2$. Then, for any $\mathbf{y} \in \mathbb{B}^{\mathcal{V}}$

$$A(\mathbf{y}, \Omega_{1})$$

$$= \min_{\omega \in \Omega_{1}} C(\omega) + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega_{1}} F^{i}(\omega) y_{i} + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega_{1}} B^{i}(\omega) (1 - y_{i}) + \sum_{(p,q) \in \mathcal{E}} \min_{\omega \in \Omega_{1}} P^{ij}(\omega) |y_{i} - y_{j}|$$

$$\geq \min_{\omega \in \Omega_{2}} C(\omega) + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega_{2}} F^{i}(\omega) y_{i} + \sum_{i \in \mathcal{V}} \min_{\omega \in \Omega_{2}} B^{i}(\omega) (1 - y_{i}) + \sum_{(i,j) \in \mathcal{E}} \min_{\omega \in \Omega_{2}} P^{ij}(\omega) |y_{i} - y_{j}|$$

$$= A(\mathbf{y}, \Omega_{2}).$$
(5)

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 36 / 48

Monotonicity

Proof. Continued

Note that $L(\Omega) \stackrel{\Delta}{=} \min_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} A(\mathbf{y}, \Omega)$.

 $\text{Let } \mathbf{y}_1^* \in \operatorname{argmin}_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} A(\mathbf{y}, \Omega_1) \text{ and } \mathbf{y}_2^* \in \operatorname{argmin}_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega) \text{ with respect to } \Omega \text{ (5), we get that } \mathbf{y} \in \operatorname{argmin}_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2) \text{ with respect to } \Omega \text{ (5)}, \text{ we get that } \mathbf{y} \in \operatorname{argmin}_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ then due to the monotonicity for } A(\mathbf{y}, \Omega_2), \text{ th$

$$L(\Omega_1) \stackrel{\Delta}{=} A(\mathbf{y}_1^*, \Omega_1) \geqslant A(\mathbf{y}_1^*, \Omega_2) \geqslant A(\mathbf{y}_2^*, \Omega_2) \stackrel{\Delta}{=} L(\Omega_2)$$
.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 37 / 48

Computability and tightness

Computability: the lower bound $L(\Omega)$ equals the minimum of a *regular function*, which can be globally minimized via graph-cuts.

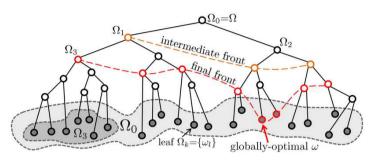
Tightness: for a singleton $\Omega=\{\omega\}$ (i.e. $|\Omega|=1$) the bound $L(\Omega)$ is **tight**, that is

$$L(\{\omega\}) = \min_{\mathbf{y} \in \mathbb{B}^{\mathcal{V}}} E(\mathbf{y}, \omega) .$$

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut -38/48

Best-first branch-and-bound optimization



Source: Lempitsky et al.: Branch-and-MinCut: Global optimization for image segmentation with high-level-priors. JMIV, 2012.

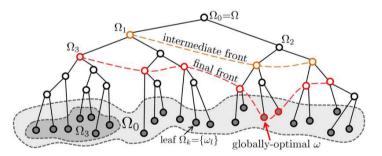
The discrete domain Ω can be hierarchically clustered and the binary tree of its subregions can be considered.

At each step the active node with the **smallest** lower bound is removed from the active front, while two of its children are added to the active front (due to monotonicity property they have higher or equal lower bounds).

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 39 / 48

Best-first branch-and-bound optimization



If the active node with the smallest lower bound turns out to be a **leaf** ω' and \mathbf{y}' is the corresponding optimal segmentation, then $E(\mathbf{y}', \omega') = L(\omega')$ due to the tightness property. Consequently, (\mathbf{y}', ω') is a **global minimum**.

Remark that in worst-case any optimization has to search exhaustively over Ω .

```
Pseudo code of Branch-And-Mincut *
 1: Front ← Ø

    □ initializing the priority queue

 2: [C_0, \{F_0^i\}, \{B_0^i\}, \{P_0^{ij}\}] \leftarrow \text{GetAggregEnergies}(\Omega_0)
 3: LB_0 \leftarrow GetMaxFlowValue(\{F_0^i\}, \{B_0^i\}, \{P_0^{ij}\}) + C_0
 4: Front.InsertWithPriority(\Omega_0,-LB<sub>0</sub>)
 5: while true do

    □ advancing front

          \Omega \leftarrow \mathsf{Front}.\mathsf{PullHighestPriorityElement}()
          if IsSingleton(\Omega) then
 7:
                                                                                                                                                                                                               \omega \leftarrow \Omega
 8:
               [C, \{F^i\}, \{B^i\}, \{P^{ij}\}] \leftarrow \texttt{GetAggregEnergies}(\omega)
9:
               \mathbf{x} \leftarrow \text{FindMinimumViaMincut}(\{F^i\}, \{B^i\}, \{P^{ij}\})
10:
               return (\mathbf{x}, \omega)
11:
           end if
12:
           [\Omega_1, \Omega_2] \leftarrow \texttt{GetChildrenSubdomains}(\Omega)
13:
           [C_1, \{F_1^i\}, \{B_1^i\}, \{P_1^{ij}\}] \leftarrow \texttt{GetAggregEnergies}(\Omega_1)
14:
          LB_1 \leftarrow GetMaxFlowValue(\{F_1^i\}, \{B_1^i\}, \{P_1^{ij}\}) + C_1
15:
           Front.InsertWithPriority(\Omega_1,-LB<sub>1</sub>)
16:
           [C_2, \{F_2^i\}, \{B_2^i\}, \{P_2^{ij}\}] \leftarrow \texttt{GetAggregEnergies}(\Omega_2)
17:
           LB_2 \leftarrow GetMaxFlowValue(\{F_2^i\}, \{B_2^i\}, \{P_2^{ij}\}) + C_2
18:
           Front.InsertWithPriority(\Omega_2,-LB<sub>2</sub>)
19:
20: end while
```

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch–and–MinCut – 41 / 48

Segmentation with shape priors

The prior is defined by the set of exemplar binary segmentations $\{\mathbf{x}^{\omega} \mid \omega \in \Omega\}$, where Ω is a discrete set indexing the exemplar segmentations.

We define a joint prior over the segmentation and the non-local parameter:

$$E_{\mathsf{prior}}(\mathbf{y},\omega) = \sum_{i \in \mathcal{V}} (1 - x_i^{\omega}) \cdot y_i + \sum_{i \in \mathcal{V}} x_i^{\omega} \cdot (1 - y_i) \ .$$

This encourages the segmentation \mathbf{y} to be close in the Hamming-distance $(d_{\mathsf{H}}(\mathbf{a},\mathbf{b}) = \frac{1}{N}\sum_{i=1}^{N} \llbracket a_i \neq b_i \rrbracket)$ to one of the exemplar shapes.

The segmentation energy may be defined by adding a standard *contrast-sensitive Potts-model* for $\lambda, \sigma > 0$:

$$E(\mathbf{y}, \omega) = E_{\mathsf{prior}}(\mathbf{y}, \omega) + \lambda \sum_{(i,j) \in \mathcal{E}} \frac{e^{-\frac{\|I_i - I_j\|}{\sigma}}}{|i - j|} \cdot |y_i - y_j| \;,$$

where I_i denotes RGB colors of the pixel i.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 42 / 48

Parameterization:

multiple templates \times translations

The shape prior is given by a set of templates, whereas each template can be located anywhere within the image.

 $\Omega = \Delta \times \Theta$, where

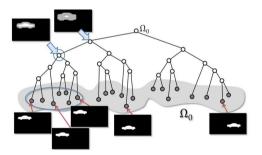
- lacktriangle the set Δ indexes the set of all exemplar segmentations x_{δ} and
- lacksquare Θ corresponds to translations.

Any exemplar segmentation \mathbf{x}^{ω} for $\omega = (\delta, \theta)$ is then defined as some exemplar segmentation x_{δ} centered at the origin and then translated by the shift θ .

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 43 / 48

Clustering tree



Source: Lempitsky et al.: Branch-and-MinCut: Global optimization for image segmentation with high-level-priors. JMIV, 2012.

For Δ we use agglomerative bottom-up clustering resulting in a (binary) clustering tree $T_{\Delta} = \{\Delta = \Delta_0, \Delta_1, \dots, \Delta_N\}$.

To build a clustering tree for Θ , we recursively split along the "longer" dimension. This leads to a (binary) tree $T_{\Theta} = \{\Theta = \Theta_0, \Theta_1, \dots, \Theta_N\}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch–and–MinCut – 44 / 48

Branch operation

Each nodeset Ω_t in the combined tree is defined by a pair $\Delta_t \times \Theta_t$.

The **looseness** of a nodeset Ω_t is defined as the number of pixels that change their mask value under different shapes in Ω_t (i.e. neither background nor foreground):

$$\Lambda(\Omega_t) = |\{i \mid \exists \omega_1, \omega_2 : x_i^{\omega_1} = 0 \text{ and } x_i^{\omega_2} = 1\}|.$$

The tree is built in a recursive top-down fashion as follows.

We start by creating a root nodeset $\Omega_0 = \Delta_0 \times \Theta_0$. Given a nodeset $\Omega_t = \Delta_t \times \Theta_t$ we consider (recursively) two possible splits:

- 1. split along the shape dimension or
- 2. split along the shift dimension.

The split that minimizes the sum of loosenesses is preferred.

The recursion stops when the leaf level is reached within both the shape and the shift trees.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 45 / 48

Results *

Source: Lempitsky et al.: Branch-and-MinCut: Global optimization for image segmentation with high-level-priors. JMIV, 2012.

Yellow: global minimum of E **Blue**: feature-based car detector **Red**: global minimum of the combination of E with detection results (detection is included as a constant potential)

The prior set Δ was built by manual segmentation of 60 training images coming with the dataset.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 46 / 48

Summary *

■ Primal-dual schema for the *multi-labeling problem*:

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} w_{ij} \cdot d(y_i, y_j)$$

- ◆ PD1: d is a semi-metric
- PD2: d is a metric (PD2 $_{\mu} = 1$ is equivalent to α -expansion)
- lacktriangle PD3: d is a non-metric function (this case has not been discussed)
- For **binary image segmentation** we learned a global optimal solution, based on *branch and bound* optimization, when we are provided with (shape) prior information.

In the next lecture we will learn about exact inference (probabilistic and MAP) on tree structured factor graphs.

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 47 / 48

Literature *

FastPD

- 1. Nikos Komodakis and Georgios Tziritas. Approximate labeling via the primal-dual schema. Technical report, University of Crete, February 2005
- 2. Nikos Komodakis and Georgios Tziritas. Approximate labeling via graph-cuts based on linear programming. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(8):1436–1453, August 2007

Branch-and-MinCut

1. Victor Lempitsky, Andrew Blake, and Carsten Rother. Branch-and-Mincut: Global optimization for image segmentation with high-level priors. *Journal of Mathematical Imaging and Vision*, 44(3):315–329, March 2012

IN2329 - Probabilistic Graphical Models in Computer Vision

7. FastPD & Branch-and-MinCut - 48 / 48