

Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

Summer Semester 2017

8. Belief Propagation

Overview of the course *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Recall: Inference *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Inference means the procedure to estimate the *probability distribution*, encoded by a *graphical model*, for a *given data* (or observation).

Assume we are given a factor graph $G = (\mathcal{V}, \mathcal{E}', \mathcal{F})$ and the observation \mathbf{x} .

■ Maximum A Posteriori (MAP) inference: find the state $y^* \in \mathcal{Y}$ of maximum probability,

$$\mathbf{y}^* \in \operatorname*{argmax} p(\mathbf{y} \mid \mathbf{x}) = \operatorname*{argmin} E(\mathbf{y}; \mathbf{x}).$$

■ **Probabilistic inference**: find the value of the partition function $Z(\mathbf{x})$ and the marginal distributions $\mu_F(\mathbf{y}_F)$ for each factor $F \in \mathcal{F}$,

$$Z(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}; \mathbf{x})),$$

$$\mu_F(\mathbf{y}_F) = p(\mathbf{y}_F \mid \mathbf{x}) .$$

Agenda for today's lecture *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Today we are going to learn about **belief propagation** to perform **exact** inference on graphical models having **tree structure**.

Reminder: a tree is a connected and acyclic graph.

- Probabilistic inference: Sum-product algorithm
- MAP inference: *Max-sum algorithm*

We also extend belief propagation for **general** factor graphs, which results in an **approximate** inference.

Sum-product algorithm

Probabilistic inference on chains

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Assume that we are given the following factor graph and a corresponding energy function $E(\mathbf{y})$, where $\mathcal{Y} = \mathcal{Y}_i \times \mathcal{Y}_i \times \mathcal{Y}_k \times \mathcal{Y}_l$.

We want to compute p(y) for any $y \in \mathcal{Y}$ by making use of the factorization

$$p(\mathbf{y}) = \frac{1}{Z} \exp(-E(\mathbf{y})) = \frac{1}{Z} \exp(-E_A(y_i, y_j)) \exp(-E_B(y_j, y_k)) \exp(-E_C(y_k, y_l)).$$

Problem: we also need to calculate the partition function

$$Z = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y})) = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E(y_i, y_j, y_k, y_l)),$$

which looks expensive (the sum has $|\mathcal{Y}_i| \cdot |\mathcal{Y}_j| \cdot |\mathcal{Y}_k| \cdot |\mathcal{Y}_l|$ terms).

Partition function

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

We can expand the partition function as

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E(y_i, y_j, y_k, y_l))$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp\left(-\left(E_A(y_i, y_j) + E_B(y_j, y_k) + E_C(y_k, y_l)\right)\right)$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \sum_{y_k \in \mathcal{Y}_k} \sum_{y_l \in \mathcal{Y}_l} \exp(-E_A(y_i, y_j)) \exp(-E_B(y_j, y_k)) \exp(-E_C(y_k, y_l))$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) \sum_{y_l \in \mathcal{Y}_l} \exp(-E_C(y_k, y_l)).$$

Elimination

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Note that we can successively eliminate variables, that is

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) \underbrace{\sum_{y_l \in \mathcal{Y}_l} \exp(-E_C(y_k, y_l))}_{r_{C \to Y_k}(y_k)}$$

 $r_{B \to Y_i}(y_j)$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) \sum_{y_k \in \mathcal{Y}_k} \exp(-E_B(y_j, y_k)) r_{C \to Y_k}(y_k)$$

$$= \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) r_{B \to Y_j}(y_j) = \sum_{y_i \in \mathcal{Y}_i} r_{A \to Y_i}(y_i) .$$

Inference on trees

Sum-product algorithm Max-sum algorithm

Loopy belief propagation

Now we are assuming a tree-structured factor graph and are applying the same elimination procedure as before.

Inference on trees (cont.)

Sum-product algorithm Max-sum algorithm

Loopy belief propagation

Now we are assuming a tree-structured factor graph and applying the same elimination procedure as before.

$$Z = \sum_{y_i \in \mathcal{Y}_i} \sum_{y_j \in \mathcal{Y}_j} \exp(-E_A(y_i, y_j)) q_{Y_j \to A}(y_j)$$
$$= \sum_{y_i \in \mathcal{Y}_i} r_{A \to Y_i}(y_i) .$$

Messages

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Message: pair of vectors at each factor graph edge $(i, F) \in \mathcal{E}'$.

1. Variable-to-factor message $q_{Y_i \to F} \in \mathbb{R}^{\mathcal{Y}_i}$ is given by

$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i) ,$$

where $M(i) = \{F \in \mathcal{F} : (i, F) \in \mathcal{E}'\}$ denotes the set of factors adjacent to Y_i .

2. Factor-to-variable message: $r_{F o Y_i} \in \mathbb{R}^{\mathcal{Y}_i}$.

Factor-to-variable message

Sum-product algorithm Max-sum algorithm Loopy belief propagation

Factor-to-variable message $r_{F \to Y_i} \in \mathbb{R}^{\mathcal{Y}_i}$ is given by 2.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y_l') \right),$$

where $N(F) = \{i \in V : (i, F) \in \mathcal{E}'\}$ denotes the set of variables adjacent to F.

Message scheduling *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

One can note that the message updates depend on each other.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y_l') \right)$$
(1)

$$q_{Y_i \to F}(y_i) = \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i) \tag{2}$$

The messages that do not depend on previous computation are the following.

- The factor-to-variable messages in which no other variable is adjacent to the factor, that is the product in (1) will be empty.
- The variable-to-factor messages in which no other factor is adjacent to the variable, that is the product in (2) is empty and the message will be one.

Message scheduling on trees

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

For tree-structured factor graphs there always exist at least one such message that can be computed initially, hence all the dependencies can be resolved.

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

- 1. Select one variable node as root of the tree (e.g., Y_m)
- 2. Compute leaf-to-root messages (e.g., by applying depth-first-search)
- 3. Compute root-to-leaf messages (reverse order as before)

Inference result: partition function Z

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Partition function is evaluated at the (root) node i

$$Z = \sum_{y_i \in \mathcal{Y}_i} \prod_{F \in M(i)} r_{F \to Y_i}(y_i) .$$

Inference result: the marginals $\mu_F(\mathbf{y}_F)$

Sum-product algorithm Max-sum algorithm

Loopy belief propagation

The marginal distribution for each factor can be computed as

$$\mu_{F}(\mathbf{y}_{F}) \stackrel{\Delta}{=} \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}'_{F} = \mathbf{y}_{F}}} p(\mathbf{y}) = \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}'_{F} = \mathbf{y}_{F}}} \frac{1}{Z} \exp(-\sum_{H \in \mathcal{F}} E_{H}(\mathbf{y}'_{H}))$$

$$= \frac{1}{Z} \exp(-E_{F}(\mathbf{y}_{F})) \sum_{\substack{\mathbf{y}' \in \mathcal{X}, \\ H \in \mathcal{F} \setminus \{F\}}} y_{H} \exp(\sum_{H \in \mathcal{F} \setminus \{F\}} -E_{H}(\mathbf{y}'_{H}))$$

$$= \frac{1}{Z} \exp(-E_{F}(\mathbf{y}_{F})) \prod_{i \in N(F)} q_{Y_{i} \to F}(y_{i}).$$

$$q_{Y_{i} \to F}(y_{i}) \sum_{i \in N(F)} q_{Y_{i} \to F}(y_{i})$$

Optimality and complexity *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Assume a tree-structured factor graph. If the messages are computed based on depth-first search order for the sum-product algorithm, then it converges after $2|\mathcal{V}|$ iterations and provides the **exact** marginals.

If $|\mathcal{Y}_i| \leq K$ for all $i \in \mathcal{V}$, then the complexity of the algorithm $\mathcal{O}(|\mathcal{V}| \cdot K^L)$, where $L = \max_{F \in \mathcal{F}} |N(F)|$.

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{j \in N(F) \setminus \{i\}} q_{Y_j \to F}(y_j') \right).$$

Note that the complexity of the na

ive way is $\mathcal{O}(K^{|\mathcal{V}|})$.

Reminder: Assuming $f, g : \mathbb{R} \to \mathbb{R}$, the notation $f(x) = \mathcal{O}(g(x))$ means that there exists C > 0 and $x_0 \in \mathbb{R}$ such that $|f(x)| \leq C|g(x)|$ for all $x > x_0$.

Max-sum algorithm

MAP inference

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

$$\mathbf{y}^* \in \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \tilde{p}(\mathbf{y}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \tilde{p}(\mathbf{y}).$$

Similar to the *sum-product algorithm* one can obtain the so-called **max-sum algorithm** to solve the above maximization.

By applying the \ln function, we have

$$\ln \max_{\mathbf{y} \in \mathcal{Y}} \tilde{p}(\mathbf{y}) = \max_{\mathbf{y} \in \mathcal{Y}} \ln \tilde{p}(\mathbf{y})$$

$$= \max_{\mathbf{y} \in \mathcal{Y}} \ln \prod_{F \in \mathcal{F}} \exp(-E_F(\mathbf{y}_F))$$

$$= \max_{\mathbf{y} \in \mathcal{Y}} \sum_{F \in \mathcal{F}} -E_F(\mathbf{y}_F).$$

MAP inference on trees

Sum-product algorithm Max-sum algorithm

Loopy belief propagation

Now we are assuming a tree-structured factor graph and applying an elimination procedure as before.

MAP inference on trees (cont.)

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Now we are assuming a tree-structured factor graph and applying an elimination procedure as before.

The solution is then obtained as:

$$y_{i}^{*} \in \underset{y_{i}}{\operatorname{argmax}} r_{A \to Y_{i}}(y_{i}), \qquad y_{j}^{*} \in \underset{y_{j}}{\operatorname{argmax}} -E_{A}(y_{i}^{*}, y_{j}) + q_{Y_{j} \to A}(y_{j}),$$

 $y_{k}^{*} \in \underset{y_{k}}{\operatorname{argmax}} -E_{B}(y_{j}^{*}, y_{k}), \qquad y_{l}^{*} \in \underset{y_{l}}{\operatorname{argmax}} -E_{C}(y_{j}^{*}, y_{l}).$

Messages

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

The messages become as follows

$$q_{Y_i \to F}(y_i) = \sum_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)$$

$$r_{F \to Y_i}(y_i) = \max_{\substack{y'_F \in \mathcal{Y}_F, \\ y'_i = y_i}} \left(-E_F(y'_F) + \sum_{l \in N(F) \setminus \{i\}} q_{Y_l \to F}(y'_l) \right).$$

The max-sum algorithm provides **exact** MAP inference for tree-structured factor graphs.

Choosing an optimal state

Sum-product algorithm Max-sum algorithm

Loopy belief propagation

After calculating the messages, the following back-tracking algorithm is applied for choosing an optimal y^* .

Initialize the procedure at the root node (Y_i) by choosing any

$$y_i^* \in \underset{y_i \in \mathcal{Y}_i}{\operatorname{argmax}} \max_{\mathbf{y}' \in \mathcal{Y}, y_i' = y_i} \tilde{p}(\mathbf{y}') ,$$

and set $\mathcal{I} = \{i\}$.

- 2. Based on (reverse) depth-first search order, for each $j \in \mathcal{V} \setminus \mathcal{I}$
 - (a) choose a configuration y_i^* at the node Y_j such that

$$y_j^* \in \underset{y_j \in \mathcal{Y}_j}{\operatorname{argmax}} \quad \underset{\mathbf{y}' \in \mathcal{Y}, \\ y_j' = y_j, \\ y_i' = y_i^* \ \forall i \in \mathcal{I}}{\operatorname{max}} \quad \tilde{p}(\mathbf{y}') ,$$

(b) update $\mathcal{I} = \mathcal{I} \cup \{j\}$.

Sum-product and Max-sum comparison *

Sum-product algorithm Max-sum algorithm

Loopy belief propagation

Sum-product algorithm

$$q_{Y_i \to F}(y_i) = \prod_{\substack{F' \in M(i) \setminus \{F\}}} r_{F' \to Y_i}(y_i)$$

$$r_{F \to Y_i}(y_i) = \sum_{\substack{y'_F \in \mathcal{Y}_F, \\ y'_i = y_i}} \left(\exp(-E_F(y'_F)) \prod_{\substack{l \in N(F) \setminus \{i\}}} q_{Y_l \to F}(y'_l) \right)$$

Max-sum algorithm

$$q_{Y_i \to F}(y_i) = \sum_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)$$

$$r_{F \to Y_i}(y_i) = \max_{\substack{y'_F \in \mathcal{Y}_F, \\ y'_i = y_i}} \left(-E_F(y'_F) + \sum_{\substack{l \in N(F) \setminus \{i\}}} q_{Y_l \to F}(y'_l) \right)$$

Example *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Let us consider the following factor graph with binary variables:

$E_A(0, \epsilon)$	$y_j, y_k)$	$E_A(1,$	$y_j, y_k)$
	y_k		y_k
	0 1		0 1
0	1 0	0	0 -1
$\begin{bmatrix} y_j \\ 1 \end{bmatrix}$	0 1	y_j 1	0 0

$E_B(y_k)$		
	y_k	
0	1	
1	0.5	

$E_C(y_k, y_l)$		
	y_l	
	0 1	
0	0 0.5	
y_k 1	0.5 0	

Let us chose the node Y_i as root. We calculate the messages for the max-sum algorithm from leaf—to—root direction in a depth-first search order as follows.

1.
$$q_{Y_I \to C}(0) = q_{Y_I \to C}(1) = 0$$

2.
$$r_{C \to Y_k}(0) = \max_{y_l \in \{0,1\}} \{-E_C(0, y_l) + q_{Y_l \to C}(0)\} = \max_{y_l \in \{0,1\}} -E_C(0, y_l) = 0$$

 $r_{C \to Y_k}(1) = \max_{y_l \in \{0,1\}} \{-E_C(1, y_l) + q_{Y_l \to C}(1)\} = \max_{y_l \in \{0,1\}} -E_C(1, y_l) = 0$

3.
$$r_{B \to Y_k}(0) = -1$$

 $r_{B \to Y_k}(1) = -0.5$

4.
$$q_{Y_k \to A}(0) = r_{B \to Y_k}(0) + r_{C \to Y_k}(0) = -1 + 0 = -1$$

 $q_{Y_k \to A}(1) = r_{B \to Y_k}(1) + r_{C \to Y_k}(1) = -0.5 + 0 = -0.5$

Example (cont.) *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

5.
$$q_{Y_i \to A}(0) = q_{Y_i \to A}(1) = 0$$

6.
$$r_{A \to Y_i}(0) = \max_{y_j, y_k \in \{0,1\}} \{-E_A(0, y_j, y_k) + q_{Y_j \to A}(y_j) + q_{Y_k \to A}(y_k)\} = -0.5$$

 $r_{A \to Y_i}(1) = \max_{y_j, y_k \in \{0,1\}} \{-E_A(1, y_j, y_k) + q_{Y_j \to A}(y_j) + q_{Y_k \to A}(y_k)\} = 0.5$

In order to calculate the maximal state y^* we apply back-tracking

1.
$$y_i^* \in \operatorname{argmax}_{y_i \in \{0,1\}} r_{A \to Y_i}(y_i) = \{1\}$$

2.
$$y_j^* \in \operatorname{argmax}_{y_j} \max_{y_j, y_k \in \{0,1\}} \{-E_A(1, y_j, y_k) + q_{Y_k \to A}(y_k)\} = \{0\}$$

3.
$$y_k^* \in \operatorname{argmax}_{y_k \in \{0,1\}} \{ -E_A(1,0,y_k) + r_{B \to Y_k}(y_k) + r_{C \to Y_k}(y_k) \} = \{1\}$$

4.
$$y_l^* \in \operatorname{argmax}_{y_l \in \{0,1\}} \{ -E_C(1, y_l) + r_{C \to Y_k}(1) \} = \{1\}$$

Therefore, the optimal state $y^* = (y_i^*, y_j^*, y_k^*, y_l^*) = (1, 0, 1, 1)$.

Loopy belief propagation

Message passing in cyclic graphs

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

When the graph has cycles, then there is no well-defined *leaf-to-root* order. However, one can apply message passing on cyclic graphs, which results in **loopy belief propagation**.

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

- 1. Initialize all messages as constant 1
- 2. Pass factor—to—variables and variables—to—factor messages alternately until convergence
- 3. Upon convergence, treat **beliefs** μ_F as approximate marginals

Messages

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

The **factor–to–variable messages** $r_{F \to Y_i}$ remain well-defined and are computed as before:

$$r_{F \to Y_i}(y_i) = \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\exp(-E_F(\mathbf{y}_F')) \prod_{j \in N(F) \setminus \{i\}} q_{Y_j \to F}(y_j') \right).$$

The **variable-to-factor messages** are simply normalized at every iteration as follows:

$$q_{Y_i \to F}(y_i) = \frac{\prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i)}{\sum_{y_i' \in \mathcal{Y}_i} \prod_{F' \in M(i) \setminus \{F\}} r_{F' \to Y_i}(y_i')}.$$

Beliefs

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

The approximate marginals, i.e.**beliefs**, are computed as before, but now a factor-specific normalization constant z_F is also used.

The factor marginals are given by

$$\mu_F(y_F) = \frac{1}{z_F} \exp(-E_F(y_F)) \prod_{i \in N(F)} q_{Y_i \to F}(y_i) ,$$

where the factor specific normalization constant is given by

$$z_F = \sum_{y_F \in \mathcal{Y}_F} \exp(-E_F(y_F)) \prod_{i \in N(F)} q_{Y_i \to F}(y_i) .$$

Beliefs (cont.) *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

In addition to the factor marginals the algorithm also computes the **variable** marginals in a similar fashion.

$$\mu_i(y_i) = \frac{1}{z_i} \prod_{F' \in M(i)} r_{F' \to Y_i}(y_i) ,$$

where the normalizing constant is given by

$$z_i = \sum_{y_i \in \mathcal{Y}_i} \prod_{F' \in M(i)} r_{F' \to Y_i}(y_i) .$$

Since the local normalization constant z_F differs at each factor for loopy belief propagation, the exact value of the normalizing constant Z cannot be directly calculated. Instead, an approximation to the partition function can be computed.

Remarks on loopy belief propagation

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

Loopy belief propagation is very popular, but has some problems:

- It might not converge (e.g., it can oscillate).
- Even if it does, the computed probabilities are only *approximate*.
- If there is a single cycle only in the graph, then it converges.

Summary *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

- We have discussed exact inference methods on tree-structured graphical models
 - ◆ Probabilistic inference: Sum-product algorithm
 - ◆ MAP inference: *Max-sum algorithm*
- For general factor graphs: Loopy belief propagation

In the **next lecture** we will learn about

■ Human-pose estimation

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

Mean-field approximation: probabilistic inference via optimization (a.k.a. variational inference)

Literature *

Sum-product algorithm

Max-sum algorithm

Loopy belief propagation

- 1. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010
- 2. Daphne Koller and Nir Friedman. *Probabilistic Graphical Models: Principles and Techniques*. MIT Press, 2009
- 3. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann, 1988