Probabilistic Graphical Models in Computer Vision (IN2329)

Csaba Domokos

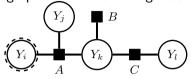
Summer Semester 2017

9. Human pose estimation & Mean field approximation	2
9. Human pose estimation & Mean field approximation	3
Human pose estimation	2
The model	F
The model (cont.)	6
Graphical representation	7
Image filters *	8
Derivatives of a Gaussian *	
Unary energies *	
Pairwise energies *	
Pairwise energies (cont.) *	. 12
Inference	
Efficient inference via min convolution	
Calculating the lower envelope	
Updating the lower envelope	
Pseudo-code of the min convolution *	. 17
Mean field approximation	15
ivicali licia approximation	Τ.

KL divergence	9
KL divergence. 19 Motivation. 20	0
Mean field methods	
Naïve mean field	2
Naïve mean field *	3
Naïve mean field	4
Optimization	5
Lagrange multipliers *	6
Lagrange multipliers *	
Update equation	8.
Semantic segmentation	9
Energy functions	0
Inference	1
DeepLab: CRF as post-processing	2
Next lecture *	
Literature *	5
Semantic segmentation 29 Energy functions 30 Inference 31 DeepLab: CRF as post-processing 32 Summary *	9 0 1 2 3

Agenda for today's lecture $\ensuremath{^*}$

In the last lecture we learnt about exact inference methods on graphical models having tree structure.



Today we are going to learn about

■ Human-pose estimation

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

■ Mean-field approximation: probabilistic inference via optimization (a.k.a. variational inference)

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 3 / 35

Human pose estimation 4/35

The model

The goal is to recognize an articulated object with joints connecting different parts, here it is a *human body*.

An object is composed of a number of **rigid parts**. Each part is modeled as a rectangle parameterized by (x, y, s, θ) , where

- \blacksquare (x,y) means the **center of the rectangle**,
- \blacksquare $s \in [0,1]$ is a **scaling factor**, and
- **The orientation** is given by θ .

In overall, we have a four-dimensional pose space.

We denote the **locations** of two (connected) parts by $l_i = (x_i, y_i, s_i, \theta_i)$ and $l_j = (x_j, y_j, s_j, \theta_j)$, respectively.

Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

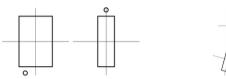
IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 5 / 35

The model (cont.)

An object (e.g., human body) is given by a configuration $\mathbf{l} = (l_1, \dots, l_n)$, where l_i specifies the location of **part** v_i . The connections encode generic relationships such as "close to", "to the left of", or more precise geometrical constraints such as ideal joint angles.

- The **location of a joint** between v_i and v_j is specified by two points (x_{ij}, y_{ij}) and (x_{ji}, y_{ji}) .
- The **relative orientation** is given by θ_{ij} , which is the difference between the orientation of the two parts.



Source: Felzenszwalb and Huttenlocher. Pictorial Structures for Object Recognition. IJCV, 2005.

In principle, all parts depend on each other, however, tree structured model can be considered for an articulated pose.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation - 6 / 35

Graphical representation

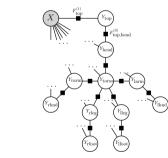
The structure is encoded by a graph $G = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{v_1, \dots, v_n\}$ corresponds to n parts, and there is an edge $(v_i, v_j) \in \mathcal{E}$ for each pair of connected parts v_i and v_j .

We want to minimize the following energy function:

$$\mathbf{l}^* \in \operatorname{argmin} \left(\sum_{i=1}^n m_i(l_i) + \sum_{(v_i, v_j) \in \mathcal{E}} d_{ij}(l_i, l_j) \right),$$

where $m_i(l_i)$ measures the degree of mismatch when the part v_i is placed at location l_i and $d_{ij}(l_i, l_j)$ measures the degree of deformation of the model when part v_i is placed at location l_i and part v_j is placed at location l_j .

Note that MAP inference can be efficiently done by making use of Max-sum algorithm.



Source: Nowozin and Lampert. Structured Learning and Prediction. 2011.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation -7/35

Image filters *

The **image filtering** is a technique for modifying or enhancing an image (e.g., smoothing, edge detection, sharpening). For example, the smoothing of an input signal means of removing (or filtering out) high-frequency components.

Here we consider **linear filtering** in which the value of an output pixel is a linear combination of the values of the pixels in the input pixel's neighborhood. In a spatially discrete setting, a linear filter is a weighted sum:

$$g(x_0, y_0) = [f * w](x_0, y_0) = \sum_{m,n} w(m, n) \cdot f(x_0 - m, y_0 - n)$$

which is also called **discrete convolution** of f and w. In practice this summation extends over a certain neighborhood. The matrix of weights w(m,n) is called a **mask**.

(For more details please refer to the course of Computer Vision I: Variational Methods.)

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation - 8 / 35

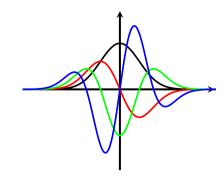
Derivatives of a Gaussian *

Let us consider the (one-dimensional) Gaussian density function:

$$f_X(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$$
.

Assume that $\mu=0$ and let us calculate the derivatives of $f_X(x;0,\sigma)$ of different orders

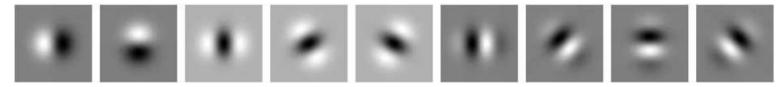
$$\frac{\partial f_X(x;0,\sigma)}{\partial x} = \frac{-x}{\sigma^3 \sqrt{2\pi}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$$
$$\frac{\partial f_X(x;0,\sigma)}{\partial^2 x} = \frac{x^2 - \sigma^2}{\sigma^5 \sqrt{2\pi}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$$
$$\frac{\partial f_X(x;0,\sigma)}{\partial^3 x} = \frac{x(3\sigma^2 - x^2)}{\sigma^7 \sqrt{2\pi}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$$



9. Human pose estimation & Mean field approximation – 9 / 35 $\,$

Unary energies *

An image patch centered at some position is represented by a vector that collects all the responses of a set of Gaussian derivative filters of different orders, orientations and scales at that point. This vector is normalized and called the **iconic index** at that position.



The unary energies are defined as

$$m_i(l_i) = -\ln \mathcal{N}(\alpha(l_i), \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
,

where $\alpha(l_i)$ is the *iconic index* at location l_i in the image.

The parameters for each part (i.e. the mean vector μ_i and the covariance matrix Σ_i for all $i=1,\ldots,n$) can be obtained by maximum likelihood estimation for a given set of training samples.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 10 / 35

Pairwise energies *

The pairwise energies have a special form as follows.

$$d_{ij}(l_i, l_j) = -\ln \mathcal{N}(T_{ji}(l_j) - T_{ij}(l_i), \mathbf{0}, \mathbf{D}_{ij}),$$

where T_{ij} , T_{ji} and \mathbf{D}_{ij} are connection parameters

$$T_{ij}(l_i) = (x_i', y_i', s_i, \cos(\theta_i + \theta_{ij}), \sin(\theta_i + \theta_{ij})),$$

$$T_{ji}(l_j) = (x_j', y_j', s_j, \cos(\theta_j), \sin(\theta_j)),$$

$$\mathbf{D}_{ij} = \operatorname{diag}(\sigma_x^2, \sigma_y^2, \sigma_s^2, 1/k, 1/k).$$

 $T_{ij}(l_i)$ and $T_{ji}(l_j)$ are one-to-one mappings encoding the set of possible transformed locations. θ_{ij} stands for the ideal relative angle between the *i*th and *j*th parts.

9. Human pose estimation & Mean field approximation – $11\ /\ 35$

Pairwise energies (cont.) *

Let \mathbf{R}_{θ} be the matrix that performs a rotation of θ radians about the origin. Then,

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + s_i \mathbf{R}_{\theta_i} \begin{bmatrix} x_{ij} \\ y_{ij} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} x_j' \\ y_j' \end{bmatrix} = \begin{bmatrix} x_j \\ y_j \end{bmatrix} + s_j \mathbf{R}_{\theta_j} \begin{bmatrix} x_{ji} \\ y_{ji} \end{bmatrix} \;,$$

where (x_i, y_i) , (x_j, y_j) and (x_{ij}, y_{ij}) , (x_{ji}, y_{ji}) are the positions of the joints in image and local coordinates, respectively. We assume the following joint distributions:

- \blacksquare $\mathcal{N}(x_i x_j, 0, \sigma_x^2)$ and $\mathcal{N}(y_i y_j, 0, \sigma_y^2)$ which measures the horizontal and vertical distances, respectively, between the observed joint positions.
- $N(s_i s_j, 0, \sigma_s^2)$ measures the difference in foreshortening between the two parts.
- \blacksquare $\mathcal{M}(\theta_i \theta_j, \theta_{ij}, k) \propto \exp(k\cos(\theta_i \theta_j \theta_{ij}))$ measures the difference between the relative angle of the two parts and the ideal relative angle.

These parameters can be also obtained by maximum likelihood estimation.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation - 12 / 35

Inference

MAP inference provides a single (best) prediction of the overall pose. The factor-to-varaible messages can be written as

$$\begin{split} r_{F \to v_i}(l_i) &= \max_{\substack{(l_i', l_j') \in \mathcal{Y}_F, \\ l_i' = l_i}} \left(\exp(-m_i(l_i') - d_{ij}(l_i', l_j')) + \sum_{k \in N(F) \setminus \{i\}} q_{v_k \to F}(l_k') \right) \\ &= \max_{l_j \in \mathcal{Y}_j} \left(\underbrace{\exp(-m_i(l_i))}_{\text{const.}} \exp(-d_{ij}(l_i, l_j)) + \underbrace{q_{v_j \to F}(l_j)}_{h(l_i)} \right). \end{split}$$

 \mathcal{Y} could be quite large ($\approx 1.5M$ possible states), hence $\mathcal{Y}_i \times \mathcal{Y}_j$ is too big. However a special form of pairwise energies is used, so that a message can be calculated in $\mathcal{O}(|\mathcal{Y}_i|)$ time.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 13 / 35

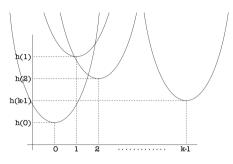
Efficient inference via min convolution

Assume that we have to compute a message for $(i,j) \in \mathcal{E}$, that is for a given $c \in \mathbb{R}$

$$r(l_i) = \min_{l_j} (c \cdot d_{ij}(l_i, l_j) + h(l_j)) = \min_{l_j} (c \cdot (l_i - l_j)^2 + h(l_j)) .$$

Here we only discuss the one-dimensional case, however, the extension for the multi-dimensional case is straightforward.

The basic idea is to calculate the **lower envelope**, which can be done in linear time w.r.t. the possible values of $l_i \in \mathcal{Y}_i$.



Source: Felzenszwalb and Huttenlocher. Pictorial Structures for Object Recognition. IJCV, 2005.

We consider parabolas rooted at $(l_i, h(l_i))$ (i.e. $y = c \cdot (x - l_i)^2 + h(l_i)$).

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 14 / 35

Calculating the lower envelope

Note that any two parabolas defining the lower envelope intersect at **exactly one point**. The x-coordinate of the intersection of the parabolas rooted at (p,h(p)) and (q,h(q)) can be calculated as

$$s = \frac{h(p) - h(q) + cp^2 - cq^2}{2c(p-q)}$$

Note that when q < p then the parabola coming from q is below the one coming from p to the left of the intersection point s, and above it to the right of s.

The algorithm manages two arrays:

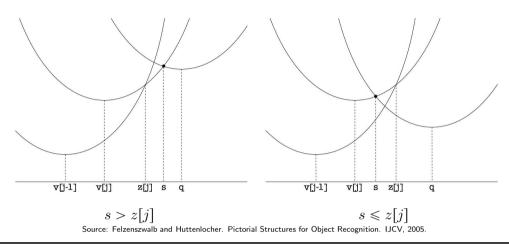
- lacktriangle The horizontal grid location of the ith parabola in the lower envelope is stored in v[i]
- The range in which the ith parabola of the lower envelope is below the others is given by z[i] and z[i+1]

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation - 15 / 35

Updating the lower envelope

There are two possible cases when adding a parabola from q to the lower envelope constructed so far:



IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation $-16\ /\ 35$

Pseudo-code of the min convolution * 1: *j* ← 0 ⊳ Index of rightmost parabola in lower envelope $2: v[0] \leftarrow 0$ 3: $z[0] \leftarrow -\infty$ 4: $z[1] \leftarrow \infty$ 5: **for** $q = 1 \to n - 1$ **do** □ Compute lower envelope $s \leftarrow (h(q) - h(v[j]) + cq^2 - cv[j]^2)/(2c(q - v[j]))$ if $s \leqslant z[j]$ then $j \leftarrow j - 1$ and goto 6 9: else 10: $j \leftarrow j + 1$ $v[j] \leftarrow q; z[j] \leftarrow s; z[j+1] \leftarrow \infty$ 11: 12: end if 13: end for 14: $j \leftarrow 0$ 15: **for** $q = 0 \to n - 1$ **do** ⇒ Fill in values of min convolution while z[j+1] < q do 16: 17: $j \leftarrow j + 1$ end while 18: $r(q) \leftarrow c(q - v[j])^2 + h(v[j])$ 19: 20: end for

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 17 / 35

Mean field approximation 18 / 35

KL divergence

Assume two discrete probability distributions p and q. One way to measure the *difference* between p and q is to calculate the **Kullback–Leibler (KL) divergence** (a.k.a. *relative entropy*) defined as

$$D_{\mathrm{KL}}(p||q) = \sum_{i} p(i) \log \frac{p(i)}{q(i)} = \sum_{i} p(i) \log p(i) - \sum_{i} p(i) \log q(i)$$
$$= \mathbb{E}_{p}[\log p(i)] - \mathbb{E}_{p}[\log q(i)].$$

It is defined iff for all i, q(i)=0 implies p(i)=0. If p(i)=0, then the ith term is interpreted as 0. The KL divergence is always non-negative, moreover $D_{\mathrm{KL}}(p\|q)=0$ iff p=q almost everywhere. Nevertheless, it is neither symmetric nor does it satisfy the triangle inequality.

Interpretation (Information Theory): it is the amount of information lost when q is used to approximate p. It measures the expected number of extra bits required to code samples from p using a code optimized for q rather than the code optimized for p.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation -19/35

Motivation

For general (discrete) factor graph models, performing *probabilistic inference* is hard. Assume we are given an **intractable** distribution $p(\mathbf{y} \mid \mathbf{x})$. We consider an **approximate distribution** $q(\mathbf{y})$, which is *tractable*, for $p(\mathbf{y} \mid \mathbf{x})$.

One way of finding the best approximating distribution is to pose it as an **optimization problem** over probability distributions: given a distribution $p(\mathbf{y} \mid \mathbf{x})$ and a family Q of tractable distributions $q \in Q$ on \mathcal{Y} , we want to solve

$$q^* \in \underset{q \in Q}{\operatorname{argmin}} D_{\mathrm{KL}}(q(\mathbf{y}) \| p(\mathbf{y} \mid \mathbf{x})) = \underset{q \in Q}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathcal{Y}} q(\mathbf{y}) \log \frac{q(\mathbf{y})}{p(\mathbf{y} \mid \mathbf{x})}$$
$$= \underset{q \in Q}{\operatorname{argmin}} \left\{ \underbrace{\sum_{\mathbf{y} \in \mathcal{Y}} q(\mathbf{y}) \log q(\mathbf{y})}_{-H(q)} - \underbrace{\sum_{\mathbf{y} \in \mathcal{Y}} q(y) \log p(\mathbf{y} \mid \mathbf{x})}_{\mathbf{y} \in \mathcal{Y}} \right\}.$$

The term $-\sum_{\mathbf{y}\in\mathcal{Y}}q(\mathbf{y})\log q(\mathbf{y})\stackrel{\Delta}{=}H(q)$ is called the **entropy** of the distribution q.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 20 / 35 $\,$

Mean field methods

$$D_{\mathrm{KL}}(q(\mathbf{y}) \| p(\mathbf{y} \mid \mathbf{x})) = -H(q) - \sum_{\mathbf{y} \in \mathcal{Y}} q(\mathbf{y}) \log p(\mathbf{y} \mid \mathbf{x})$$

$$= -H(q) - \sum_{\mathbf{y} \in \mathcal{Y}} q(\mathbf{y}) \log \frac{1}{Z(\mathbf{x})} \prod_{F \in \mathcal{F}} \exp(-E_F(\mathbf{y}_F; \mathbf{x}_F))$$

$$= -H(q) + \sum_{\mathbf{y} \in \mathcal{Y}} \sum_{f \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} q(\mathbf{y}') E_F(\mathbf{y}_F; \mathbf{x}_F) + \log Z(\mathbf{x})$$

$$= -H(q) + \sum_{F \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} q(\mathbf{y}') E_F(\mathbf{y}_F; \mathbf{x}_F) + \log Z(\mathbf{x})$$

$$= -H(q) + \sum_{F \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \mu_{F,\mathbf{y}_F}(q) E_F(\mathbf{y}_F; \mathbf{x}_F) + \log Z(\mathbf{x}),$$

where $\mu_{F,\mathbf{y}_F}(q) = \sum_{\mathbf{y}' \in \mathcal{Y}, \mathbf{y}_F' = \mathbf{y}_F} q(\mathbf{y}')$ are the marginals of q.

IN2329 - Probabilistic Graphical Models in Computer Vision

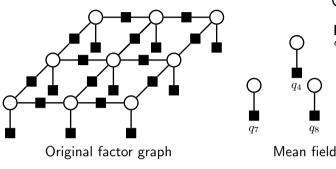
9. Human pose estimation & Mean field approximation – 21 / 35

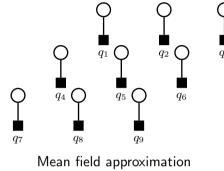
Naïve mean field

Take a set q as the set of all distributions in the form:

$$q(\mathbf{y}) = \prod_{i \in \mathcal{V}} q_i(y_i) .$$

For example, in case of the following factor graph:





IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 22 / 35

Naïve mean field *

Set q consists of all distributions in the form:

$$q(\mathbf{y}) = \prod_{i \in \mathcal{V}} q_i(y_i) .$$

Marginals μ_{F,\mathbf{y}_F} take the form

$$\mu_{F,\mathbf{y}_F}(q) = \sum_{\substack{\mathbf{y}' \in \mathcal{Y}, \\ \mathbf{y}_F' = \mathbf{y}_F}} q(\mathbf{y}) = q_{N(F)}(\mathbf{y}_F) = \prod_{i \in N(F)} q_i(y_i) .$$

Entropy H(q) decomposes as

$$H(q) = \sum_{i \in \mathcal{V}} H_i(q_i) = -\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) .$$

Proof. Exercise.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 23 / 35

Naïve mean field

Putting all together,

$$\begin{split} & q^* \in \underset{q \in Q}{\operatorname{argmin}} D_{\mathrm{KL}}(q(\mathbf{y}) \| p(\mathbf{y} \mid \mathbf{x})) \\ & = \underset{q \in Q}{\operatorname{argmin}} \left\{ -H(q) + \sum_{F \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \mu_{F,\mathbf{y}_F}(q) E_F(\mathbf{y}_F; \mathbf{x}_F) + \log Z(\mathbf{x}) \right\} \\ & = \underset{q \in Q}{\operatorname{argmax}} \left\{ H(q) - \sum_{F \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \mu_{F,\mathbf{y}_F}(q) E_F(\mathbf{y}_F; \mathbf{x}_F) \right\} \\ & = \underset{q \in Q}{\operatorname{argmax}} \left\{ -\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) - \sum_{F \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \left(\prod_{i \in N(F)} q_i(y_i) \right) E_F(\mathbf{y}_F; \mathbf{x}_F) \right\}. \end{split}$$

Optimizing over Q means to optimize over all q_i such that $q_i(y_i) \geqslant 0$ and $\sum_{y_i \in \mathcal{Y}_i} q_i(y_i) = 1$ for all $i \in \mathcal{V}$.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 24 / 35

Optimization

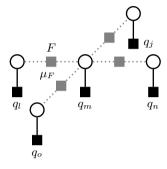
$$\underset{q \in Q}{\operatorname{argmax}} \left\{ \underbrace{-\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i)}_{\text{entropy}} - \sum_{F \in \mathcal{F}} \sum_{\mathbf{y}_F \in \mathcal{Y}_F} \left(\prod_{i \in N(F)} q_i(y_i) \right) E_F(\mathbf{y}_F; \mathbf{x}_F) \right\}.$$

The *entropy* term is concave and the second term is non-concave due to products of variables occurring in the expression. Therefore solving this non-concave maximization problem globally is hard in general.

Remedy: block coordinate ascent

We hold all variables fixed except for a single block q_m , then we obtain a tractable concave maximization problem

 \rightarrow closed-form update for each q_m .



IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 25 / 35

Lagrange multipliers *

To obtain closed form solution, we define the Lagrangian function:

$$L(q_i, \lambda) = \left\{ -\sum_{i \in \mathcal{V}} \sum_{y_i \in \mathcal{Y}_i} q_i(y_i) \log q_i(y_i) \right\}$$

$$-\sum_{F\in\mathcal{F}}\sum_{\mathbf{y}_F\in\mathcal{Y}_F} \left(\prod_{i\in N(F)} q_i(y_i)\right) E_F(\mathbf{y}_F; \mathbf{x}_F) + \lambda \left(\sum_{y_i\in\mathcal{Y}_i} q_i(y_i) - 1\right) \right\}.$$

Setting the derivatives of L w.r.t. q_i to 0, we obtain

$$\frac{\partial L}{\partial q_i(y_i)} = 0 = -\left(\log q_i(y_i) + 1\right) - \sum_{F \in M(i)} \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j')\right) E_F(\mathbf{y}_F'; \mathbf{x}_F) + \lambda$$
$$q_i^*(y_i) = \exp\left(-1 - \sum_{F \in M(i)} \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j')\right) E_F(\mathbf{y}_F'; \mathbf{x}_F) + \lambda\right).$$

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 26 / 35

Lagrange multipliers *

 λ can be calculated as follows.

$$\sum_{y_i \in \mathcal{Y}_i} q_i(y_i) = \sum_{y_i \in \mathcal{Y}_i} \exp\left(-1 - \sum_{F \in M(i)} \sum_{\mathbf{y}_F' \in \mathcal{Y}_F, \ j \in N(F) \setminus \{i\}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j')\right) E_F(\mathbf{y}_F'; \mathbf{x}_F) + \lambda\right)$$

$$\exp(1 - \lambda) = \sum_{y_i \in \mathcal{Y}_i} \exp\left(-\sum_{F \in M(i)} \sum_{\mathbf{y}_F' \in \mathcal{Y}_F, \ j \in N(F) \setminus \{i\}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j')\right) E_F(\mathbf{y}_F'; \mathbf{x}_F)\right)$$

$$y_i' = y_i$$

$$\lambda - 1 = -\log Z_i(\mathbf{x}_F),$$

where $Z_i(\mathbf{x}_F)$ is a normalizing constant for q_i .

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation -27/35

Update equation

By substituting, we obtain the obtain the update equation for the Naïve mean field method

$$q_i^*(y_i) = \exp\left(-\sum_{F \in M(i)} \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j')\right) E_F(\mathbf{y}_F'; \mathbf{x}_F) - \log Z_i(\mathbf{x}_F)\right)$$

$$= \frac{1}{Z_i(\mathbf{x}_F)} \exp\left(-\sum_{F \in M(i)} \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j')\right) E_F(\mathbf{y}_F'; \mathbf{x}_F)\right).$$

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – $28 \ / \ 35$

Semantic segmentation

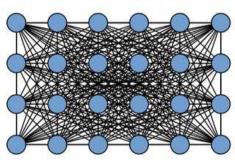
Krähenbühl and Koltun proposed an efficient approximate inference in fully connected CRF model by applying Naïve mean field approach.

Semantic segmentation: assign a label from the set of labels $\mathcal{L} = \{l_1, l_2, \dots, l_k\}$ for each pixel on the image regarding their semantic meaning.

For each pixel on the image a random variable is assigned taking a value from \mathcal{L} . A fully connected pairwise CRF model $G=(\mathcal{V},\mathcal{E})$ is considered, where the corresponding energy function is given by

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) ,$$

where $\mathcal{E} = \{(i, j) \in \mathcal{V} \times \mathcal{V} \mid i < j\}.$



IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 29 / 35

Energy functions

- Unary energies $E_i(y_i)$ are computed independently for each pixel as $E_i(y_i) = -\log P_i(y_i)$ measures the degree of disagreement between labelling y_i and the image at pixel i.
- Pairwise energies (contrast-sensitive Potts-model), measuring the extent to which the labelling y is not piecewise smooth, have the form (p_i and I_i denote the pixel coordinates and intensity, respectively).

$$E_{ij}(y_i, y_j) = [y_i \neq y_j] \sum_m w^{(m)} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j)$$

$$= [y_i \neq y_j] \sum_m w^{(m)} \exp\left(-\frac{1}{2} (\mathbf{f}_i - \mathbf{f}_j)^T \mathbf{\Sigma}^{(m)} (\mathbf{f}_i - \mathbf{f}_j)\right)$$

$$= [y_i \neq y_j] \left\{ w^{(1)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_{\alpha}^2} - \frac{|I_i - I_j|^2}{2\theta_{\beta}^2}\right) + w^{(2)} \exp\left(-\frac{|p_i - p_j|^2}{2\theta_{\alpha}^2}\right) \right\}.$$

The parameters $\theta_{\alpha}, \theta_{\beta}$ and θ_{γ} are estimated on a set of training images.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation - 30 / 35

Inference

The inference is based on Naive mean field approximation, where the update equation is given by

$$q_i(y_i) = \frac{1}{Z_i} \exp \left\{ -E_i(y_i) - \sum_{l' \in \mathcal{L}} [y_i \neq y_j] \sum_{m=1}^K w^{(m)} \sum_{i \neq j} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j) q_j(l') \right\} .$$

The inference is performed in average 0.2 seconds for 500.000 variables (in contrast to 36 hours).

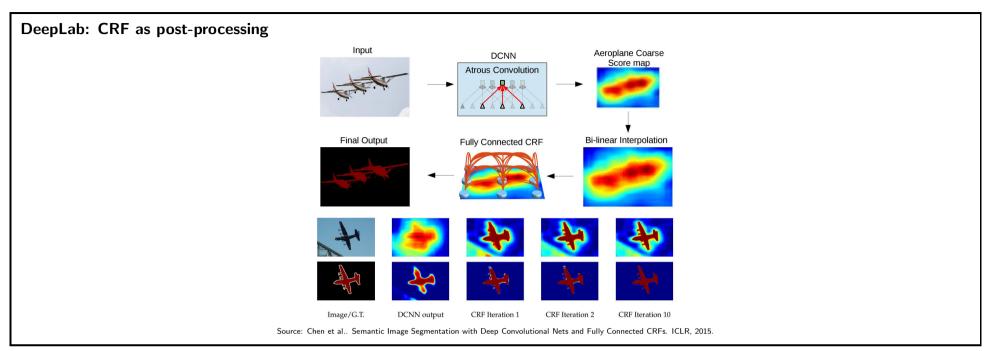
The main idea: the message passing step can be expressed as a convolution with a Gaussian kernel $G_{\Sigma^{(m)}}$ in feature space:

$$\sum_{j\in\mathcal{V}} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j)q_j(l) - q_i(l) = [G_{\mathbf{\Sigma}^{(m)}} * q(l)](\mathbf{f}_i) - q_i(l) .$$

Note that the convolution sums over all variables, while message passing does not sum over q_i . This convolution can be efficiently calculated in $\mathcal{O}(|\mathcal{V}|)$ time (instead of $\mathcal{O}(|\mathcal{V}|^2)$).

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation – 31 / 35



IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation -32/35

Summary *

Mean field approximation: instead of an *intractable* distribution $p(\mathbf{y} \mid \mathbf{x})$, we consider an *approximate distribution* $q(\mathbf{y})$, which minimizes the KL divergence.

In case of naïve mean field approximation q(y) is defined as

$$q(\mathbf{y}) = \prod_{i \in \mathcal{V}} q_i(y_i) ,$$

which is tractable.

A local optimal solution can be obtained by applying the update equation:

$$q_i^*(y_i) = \frac{1}{Z_i(\mathbf{x}_F)} \exp\left(-\sum_{F \in M(i)} \sum_{\substack{\mathbf{y}_F' \in \mathcal{Y}_F, \\ y_i' = y_i}} \left(\prod_{j \in N(F) \setminus \{i\}} q_j(y_j)\right) E_F(\mathbf{y}_F; \mathbf{x}_F)\right).$$

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation - 33 / 35

Next lecture *

In the **next lecture** we will learn about

- Sampling of a distribution $(p(y \mid x))$ via Gibbs sampling.
- Parameter learning

Consider an energy function for a parameter vector $\mathbf{w} = [w_1, w_2]^T$:

$$E(\mathbf{y}; \mathbf{x}, \mathbf{w}) = w_1 \sum_{i \in \mathcal{V}} E_i(y_i; x_i) + w_2 \sum_{(i,j) \in \mathcal{E}} E_{ij}(y_i, y_j) .$$

We aim to estimate optimal parameter vector \mathbf{w} consisting of (positive) weighting factors (like $w_1, w_2 \in \mathbb{R}^+$) for $E(\mathbf{y}; \mathbf{x}, \mathbf{w})$.

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation $-34\ /\ 35$

Literature *

Human pose estimation

1. Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for object recognition. International Journal of Computer Vision, 61(1):55-79, January 2005

Mean field approximation

- 2. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010
- 3. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009
- 4. Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In *Proceedings of Advances in Neural Information Processing Systems*, pages 109–117, Granada, Spain, December 2011. MIT Press
- 5. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In *Proceedings of International Conference on Learning Representations*, San Diego, CA, USA, May 2015

IN2329 - Probabilistic Graphical Models in Computer Vision

9. Human pose estimation & Mean field approximation $-35\ /\ 35$