Weekly Exercise 3

Dr. Csaba Domokos
Technische Universität München, Computer Vision Group
May 15th, 2017 (submission deadline: May 15th, 2017)

σ-algebra

Exercise 1 (σ-algebra, 1 point). Let Ω be a countable set. Prove that $\mathcal{A}=\mathcal{P}(\Omega)$ is a σ-algebra over Ω.

Exercise 2 (σ-algebra, 4 points).
a) Let \mathcal{A} be a σ-algebra over Ω. Show that $\Omega \in \mathcal{A}$.
b) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, such that

$$
\begin{aligned}
A \in \mathcal{A} & \Rightarrow \Omega \backslash A \in \mathcal{A} \text { and } \\
A_{1}, A_{2}, \ldots \in \mathcal{A} & \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{A} .
\end{aligned}
$$

Show that

$$
\emptyset \in \mathcal{A} \Leftrightarrow \mathcal{A} \neq \emptyset \Leftrightarrow \Omega \in \mathcal{A} .
$$

c) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ be a σ-algebra. Show that \mathcal{A} is closed under intersections, i.e.

$$
A_{1}, A_{2} \in \mathcal{A} \Rightarrow A_{1} \cap A_{2} \in \mathcal{A} .
$$

Exercise 3 (Image measure, 2 points). Let $X:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ be a random variable and let P be a probability measure over (Ω, \mathcal{A}). Show that the image measure P_{X} is a probability measure over \mathcal{A}^{\prime}.

Graphical models

Exercise 4 (Bayesian network, 1 point). Provide the factorization of $p\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$ according to the following directed graphical model:

Exercise 5 (Conditional independence in directed graphical models, 6 point). Without using the conditional independence property ${ }^{1}$ of the Bayesian network, prove the following statements, while considering the following directed graphical models:

Exercise 6 (Proof of the Clifford-Hammersley theorem, 2 points). Assume an undirected graphical model $G=(\mathcal{V}, \mathcal{E})$ satisfying the local Markov property. Consider two non-connected nodes $a, b \in \mathcal{V}$, i.e. $(a, b) \notin \mathcal{E}$, and a subset of nodes $w \subset \mathcal{V}$ such that $a, b \notin w$. Show that

$$
q\left(y_{a} \mid \mathbf{y}_{w}\right) \triangleq p\left(y_{a} \mid \mathbf{y}_{w}, \mathbf{y}_{\mathcal{V} \backslash(w \cup\{a\})}^{*}\right)=q\left(y_{a} \mid y_{b}, \mathbf{y}_{w}\right)
$$

where $p\left(\mathbf{y}_{z}, \mathbf{y}_{\vec{z}}^{*}\right)$ is a joint probability.
Exercise 7 (Factor graph, 3 points). Let G be a factor graph for a Markov random field consisting of N^{2} binary variables, representing the pixels of an $N \times N$ image. For each pixel there is a unary potential, and there are pairwise potentials according to the 8 -connected neighborhood.
a) Draw the factor graph for $N=3$.
b) What is the total number of factors, depending on N, that are included in this model?

[^0]
[^0]: ${ }^{1}$ In a Bayesian network a variable is conditionally independent of its non-descendants given its parents.

