Weekly Exercise 3

Dr. Csaba Domokos Technische Universität München, Computer Vision Group May 15th, 2017 (submission deadline: May 15th, 2017)

 σ -algebra

Exercise 1 (σ -algebra, 1 point). Let Ω be a countable set. Prove that $\mathcal{A} = \mathcal{P}(\Omega)$ is a σ -algebra over Ω .

Exercise 2 (σ -algebra, 4 points).

a) Let \mathcal{A} be a σ -algebra over Ω . Show that $\Omega \in \mathcal{A}$.

b) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, such that

$$A \in \mathcal{A} \Rightarrow \Omega \setminus A \in \mathcal{A}$$
 and
 $A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$.

Show that

$$\emptyset \in \mathcal{A} \Leftrightarrow \mathcal{A} \neq \emptyset \Leftrightarrow \Omega \in \mathcal{A}.$$

c) Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ be a σ -algebra. Show that \mathcal{A} is *closed under intersections*, i.e.

 $A_1, A_2 \in \mathcal{A} \Rightarrow A_1 \cap A_2 \in \mathcal{A}$.

Exercise 3 (Image measure, 2 points). Let $X : (\Omega, \mathcal{A}) \to (\Omega', \mathcal{A}')$ be a random variable and let *P* be a probability measure over (Ω, \mathcal{A}) . Show that the image measure P_X is a probability measure over \mathcal{A}' .

Graphical models

Exercise 4 (Bayesian network, 1 point). Provide the factorization of $p(y_1, y_2, y_3, y_4, y_5)$ according to the following directed graphical model:

SS 2017

(12 points)

(7 Points)

SS 2017

Exercise 5 (Conditional independence in directed graphical models, 6 point). Without using the conditional independence property¹ of the Bayesian network, prove the following statements, while considering the following directed graphical models:

Exercise 6 (Proof of the Clifford-Hammersley theorem, 2 points). Assume an undirected graphical model $G = (\mathcal{V}, \mathcal{E})$ satisfying the local Markov property. Consider two non-connected nodes $a, b \in \mathcal{V}$, i.e. $(a, b) \notin \mathcal{E}$, and a subset of nodes $w \subset \mathcal{V}$ such that $a, b \notin w$. Show that

$$q(y_a \mid \mathbf{y}_w) \stackrel{\Delta}{=} p(y_a \mid \mathbf{y}_w, \mathbf{y}^*_{\mathcal{V} \setminus (w \cup \{a\})}) = q(y_a \mid y_b, \mathbf{y}_w) ,$$

where $p(\mathbf{y}_z, \mathbf{y}_{\bar{z}}^*)$ is a joint probability.

Exercise 7 (Factor graph, 3 points). Let *G* be a factor graph for a Markov random field consisting of N^2 binary variables, representing the pixels of an $N \times N$ image. For each pixel there is a unary potential, and there are pairwise potentials according to the 8-connected neighborhood.

- a) Draw the factor graph for N = 3.
- b) What is the total number of factors, depending on *N*, that are included in this model?

¹In a Bayesian network a variable is conditionally independent of its non-descendants given its parents.