Weekly Exercise 6

Dr. Csaba Domokos
Technische Universität München, Computer Vision Group
June 5th, 2017 (submission deadline: June 5th, 2017)

Metric

Exercise 1 (Metric, semi-metric, 6 Points). Show that the followings hold:
a) The truncated absolute distance, defined as $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$

$$
d(x, y)=\min (K,|x-y|), \quad \text { for some } K \in \mathbb{R}^{+},
$$

is a metric.
b) The truncated quadratic function, defined as $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{0}^{+}$

$$
d(x, y)=\min \left(K,|x-y|^{2}\right), \quad \text { for some } K \in \mathbb{R}^{+},
$$

is a semi-metric.
c) The weighted Potts-model, defined as $d: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}_{0}^{+}$

$$
d\left(\ell_{1}, \ell_{2}\right)=w \cdot \llbracket \ell_{1} \neq \ell_{2} \rrbracket, \quad \text { for some } w \in \mathbb{R}^{+},
$$

is a metric.

Programming

(6 Points)
Exercise 2 (Binary image segmentation via maxFlow algorithm, 6 Points). Solve the binary image segmentation problem on the image in Figure 1 by applying the BoykovKolmogorov maxFlow algorithm.

Figure 1: The test image for binary image segmentation.

For binary segmentation $y_{i} \in \mathbb{B}$ for all $i \in \mathcal{V}$, where \mathcal{V} stands for the set of pixels, furthermore 0 and 1 denote the background and the foreground, respectively. Let us consider the following energy function for $w \in \mathbb{R}^{+}$:

$$
\begin{equation*}
E(\mathbf{y} ; \mathbf{x})=\sum_{i \in \mathcal{V}} E_{i}\left(y_{i} ; x_{i}\right)+w \sum_{\{i, j\} \in \mathcal{E}} E_{i j}\left(y_{i}, y_{j} ; x_{i}, x_{j}\right), \tag{1}
\end{equation*}
$$

where \mathcal{E} includes 4-neighboring pixels and x_{i} consists of the RGB intensities of the pixel i.

Use the GMM models f_{bg} and f_{fg} you trained in Exercise 4 in order to define the unary energy functions for all $i \in \mathcal{V}$:

$$
\begin{aligned}
& E_{i}\left(0 ; x_{i}\right)=-\log \left(f_{\mathrm{bg}}\left(x_{i}\right)\right), \\
& E_{i}\left(1 ; x_{i}\right)=-\log \left(f_{\mathrm{fg}}\left(x_{i}\right)\right) .
\end{aligned}
$$

Moreover, simply apply the Potts-model in order to define the pairwise energy functions for all $(i, j) \in \mathcal{E}$:

$$
E_{i j}\left(y_{i}, y_{j} ; x_{i}, x_{j}\right)=\llbracket y_{i} \neq y_{j} \rrbracket .
$$

Construct a flow network corresponding to the defined energy function in Eq. (1) and solve the maximum flow problem by making use of the Boykov-Kolmogorov algorithm. You may use the provided maxFlow implementation of the algorithm found in the supplementary material in2329-exercise_06_supp.zip ${ }^{1}$.

- Choose a set of different values for w, and report what you observe.
- How are the obtained segmentation results compared to the results you obtained in Exercise 4 (i.e. without having pairwise terms, that is regularization)?

Minimum cut and maximum flow

Exercise 3 (Edmonds-Karp algorithm, 4 Points). Solve the maximum flow problem corresponding to the flow network in Figure 2 by applying the Edmonds-Karp algorithm. Find the minimum $s-t$ cut as well. Draw the residual network and the flow graph for each iteration.

[^0]

Figure 2: A flow network.

[^0]: ${ }^{1}$ You may also find the implementation online http:/ /pub.ist.ac.at/~vnk/software/maxflow-v3.04.src.zip

