Weekly Exercise 6

Dr. Csaba Domokos Technische Universität München, Computer Vision Group June 5th, 2017 (submission deadline: June 5th, 2017)

Metric

Exercise 1 (Metric, semi-metric, 6 Points). Show that the followings hold:

a) The *truncated absolute distance*, defined as $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_0^+$

 $d(x,y) = \min(K, |x-y|), \text{ for some } K \in \mathbb{R}^+$,

is a metric.

b) The *truncated quadratic function*, defined as $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_0^+$

$$d(x,y) = \min(K, |x-y|^2), \text{ for some } K \in \mathbb{R}^+$$

is a semi-metric.

c) The weighted Potts-model, defined as $d: \mathbb{N} \times \mathbb{N} \to \mathbb{R}^+_0$

$$d(\ell_1, \ell_2) = w \cdot \llbracket \ell_1 \neq \ell_2 \rrbracket$$
, for some $w \in \mathbb{R}^+$,

is a metric.

Programming

Exercise 2 (**Binary image segmentation via maxFlow algorithm**, 6 Points). Solve the *binary image segmentation* problem on the image in Figure 1 by applying the *Boykov–Kolmogorov maxFlow algorithm*.

Figure 1: The test image for binary image segmentation.

(6 Points)

SS 2017

For binary segmentation $y_i \in \mathbb{B}$ for all $i \in \mathcal{V}$, where \mathcal{V} stands for the set of pixels, furthermore 0 and 1 denote the background and the foreground, respectively. Let us consider the following energy function for $w \in \mathbb{R}^+$:

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; x_i) + w \sum_{\{i,j\} \in \mathcal{E}} E_{ij}(y_i, y_j; x_i, x_j) , \qquad (1)$$

where \mathcal{E} includes 4-neighboring pixels and x_i consists of the RGB intensities of the pixel *i*.

Use the GMM models f_{bg} and f_{fg} you trained in *Exercise* 4 in order to define the **unary energy functions** for all $i \in \mathcal{V}$:

$$E_i(0; x_i) = -\log(f_{bg}(x_i)) ,$$

$$E_i(1; x_i) = -\log(f_{fg}(x_i)) .$$

Moreover, simply apply the *Potts-model* in order to define the **pairwise energy func**tions for all $(i, j) \in \mathcal{E}$:

$$E_{ij}(y_i, y_j; x_i, x_j) = \llbracket y_i \neq y_j \rrbracket$$

Construct a flow network corresponding to the defined energy function in Eq. (1) and solve the maximum flow problem by making use of the *Boykov–Kolmogorov algo-rithm*. You may use the provided maxFlow implementation of the algorithm found in the supplementary material in2329-exercise_06_supp.zip¹.

- Choose a set of different values for *w*, and report what you observe.
- How are the obtained segmentation results compared to the results you obtained in *Exercise* 4 (i.e. without having pairwise terms, that is regularization)?

Minimum cut and maximum flow (4 Points)

Exercise 3 (Edmonds–Karp algorithm, 4 Points). Solve the maximum flow problem corresponding to the flow network in Figure 2 by applying the *Edmonds–Karp algorithm*. Find the minimum s - t cut as well. Draw the residual network and the flow graph for each iteration.

 $^{^{1}}You\ may\ also\ find\ the\ implementation\ online\ http://pub.ist.ac.at/~vnk/software/maxflow-v3.04.src.zip$

SS 2017

Figure 2: A flow network.