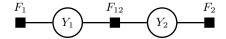
Weekly Exercise 7

Dr. Csaba Domokos Technische Universität München, Computer Vision Group June 19th, 2017

Fast Primal-Dual Schema

(6 Points)

Exercise 1 (**Primal-dual LP**, 4 Points). Let us consider the following *factor graph* model with $\mathcal{Y}_1 = \{1, 2, 3\}$ and $\mathcal{Y}_2 = \{1, 2\}$



where the factor energies are defined as follows:

y_1	$E_1(y_1)$	y_2	$E_2(y_2)$	E_{12}	(y_1,y_2)	1	2
1	5	1	1		1	0	1
2	2	2	2		2	1	0
3	7		1		3	4	1

Define the **primal** and the **dual** *linear programs*

$$\begin{aligned} & \min_{\mathbf{x}} \ \langle \mathbf{c}, \mathbf{x} \rangle & \max_{\mathbf{y}} \ \langle \mathbf{b}, \mathbf{y} \rangle \\ & \mathbf{A}\mathbf{x} = \mathbf{b} & \mathbf{A}^T \mathbf{y} \leq \mathbf{c} \\ & \mathbf{x} > \mathbf{0} \end{aligned}$$

for the *multi-labeling problem* corresponding to the factor graph above:

$$E(\mathbf{y}) = E_1(y_1) + E_2(y_2) + E_{12}(y_1, y_2)$$
.

Exercise 2 (Complementary slackness, 2 Points). Let (x, y) be a pair of *integral primal* and *dual feasible* solutions to the linear programming relaxation

$$\begin{aligned} & \min_{\mathbf{x}} \ \langle \mathbf{c}, \mathbf{x} \rangle & \max_{\mathbf{y}} \ \langle \mathbf{b}, \mathbf{y} \rangle \\ & \mathbf{A}\mathbf{x} = \mathbf{b} & \mathbf{A}^T \mathbf{y} \leq \mathbf{c} \\ & \mathbf{x} \geq \mathbf{0} \end{aligned}$$

corresponding to the multi-labeling problem. Show that if (\mathbf{x}, \mathbf{y}) satisfies the *relaxed primal complementary slackness conditions*, that is

$$\forall x_j > 0 \quad \Rightarrow \quad \sum_{i=1} a_{ij} y_i \ge \frac{c_j}{\varepsilon_j} ,$$

then x is an ε -approximation to the *optimal integral solution* x^* with $\varepsilon = \max_i \varepsilon_i$.

Programming (6 Points)

Exercise 3 (Semantic image segmentation with α -expansion, 6 Points). Consider the energy function

$$E(\mathbf{y}; \mathbf{x}) = \sum_{i \in \mathcal{V}} E_i(y_i; x_i) + w \sum_{i, j \in \mathcal{E}} E_{ij}(y_i, y_j; x_i, x_j) , \qquad (1)$$

for the multi-labeling problem, i.e. $y \in \mathcal{L}^{\mathcal{V}}$, where \mathcal{L} stands for the label set. \mathcal{V} is the set of pixels and \mathcal{E} consists of all four-neighboring pixels. Implement the α -expansion algorithm to solve the **semantic image segmentation** for the images shown in figure 1. Try to choose different w for Equation (1) and compare the segmentation results.

Figure 1: The test images for semantic image segmentation.

These test images have been obtained from the MSRC image understanding dataset¹, which contains 21 classes, i.e. $\mathcal{L} = \{1, 2, \dots, 21\}$. The meaning of the classes are given in the 21class.txt file. Use it to check whether your results are reasonable.

To define the unary energy functions E_i , use the *.c_unary files provided in the supplementary material (supp_07). Each test image has its own unary file, specified by the same filename. From each unary file, you can read out a $K \times H \times W$ array of float numbers. The H and W are the image height and width, and K=21 is the number of classes. This array contains the 21-class probability distribution for each pixel. You may find the multilabel_demo.cpp in the supplementary material, which demonstrates how to load a unary file and read out the corresponding probability values. The unary energy functions E_i for all $i \in \mathcal{V}$ are then defined as the negative log-likelihood.

The **pairwise energy functions** E_{ij} are defined by the contrast sensitive Potts-model

$$E_{ij}(y_i, y_j; x_i, x_j) = \exp(-\lambda ||x_i - x_j||^2) [|y_i \neq y_j|],$$

where x_i is the intensity vector for pixel i, and you may choose $\lambda = 0.5$.

 $^{^{1} \}verb|https://www.microsoft.com/en-us/research/project/image-understanding/$