Weekly Exercise 9

Dr. Csaba Domokos
Technische Universität München, Computer Vision Group

July 3rd, 2017

Probabilistic Inference

Exercise 1 (Inference on chains, 2 points). Consider the following factor graph, which is a chain:

The joint distribution can be written in the form

$$
p(\mathbf{y})=\frac{1}{Z} \psi_{F_{1}}\left(y_{1}, y_{2}\right) \psi_{F_{2}}\left(y_{2}, y_{3}\right) \cdot \ldots \cdot \psi_{F_{n-1}}\left(y_{n-1}, y_{n}\right)
$$

where $Z=\sum_{\mathbf{y}} \prod_{i=1}^{n-1} \psi_{F_{i}}\left(y_{i}, y_{i+1}\right)$ denotes the partition function. Show that the marginal distribution $p\left(y_{i}\right)$ decomposes into the product of two factors:

$$
p\left(y_{i}\right)=\frac{1}{Z} r_{F_{i-1} \rightarrow Y_{i}}\left(y_{i}\right) r_{F_{i} \rightarrow Y_{i}}\left(y_{i}\right) .
$$

Exercise 2 (Sum-product and max-sum, 6 points). Consider the following factor graph,

The potential functions are defined for $k \in\{1,2,3\}$

$$
\begin{aligned}
& \psi_{F_{k}}\left(y_{i}, y_{j}\right)=\exp \left(-\left(\left|y_{i}-y_{j}\right|+\left(c_{k}-y_{i}\right)^{2}\right)\right), \text { where } c_{1}=0, c_{2}=1, c_{3}=1, \text { and } \\
& \psi_{F_{4}}\left(y_{4}\right)=\exp \left(-\left(2-y_{4}\right)^{2}\right)
\end{aligned}
$$

Assume Y_{4} as the root node and $\mathbf{y} \in \mathcal{L}^{4}=\{0,1,2\}^{4}$.
a) Perform the sum-product algorithm in order to achieve probabilistic inference of the model expressed by the graph above. Show the intermediate steps in details.
b) Perform the max-sum algorithm to achieve MAP inference of the model expressed by the graph above. Show the intermediate steps in details.

