Probabilistic Graphical Models in
Computer Vision (IN2329)

Csaba Domokos
Summer Semester 2017

If, Announcement: Computer Vision Group Administrative Overview Probability theory Conditional Probability

We currently work on various research topics:

Inquiries for Bachelor and Master projects are always welcome!
Please complete the form: https://vision.in.tum.de/application
IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction

2. Administrative
3. Overview of the course
4. Introduction to Probability Theory

- Basic definitions

■ Conditional probability, Bayes' rule

- Independence, conditional independence
Administrative \quad Overview \quad Probability theory \quad Conditional Probability

IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction - 4 / 39

The course Probabilistic Graphical Models in Computer Vision will be organized as follows:
■ Lectures will take place between 10:00-12:00 on Mondays in Room 02.09.023.
■ Tutorials will take place between 14:00-16:00 on Mondays in Room 02.05.014.

Administrative

Contact details of the lecturer:
Name: Dr. Csaba Domokos
Email: csaba.domokos@in.tum.de
Office: $\quad 02.09 .060$

Feel free to contact me!

IN2329 - Probabilistic Graphical Models in Computer Vision

Participation at the tutorial is not mandatory, but highly recommended
The tutorials combines theoretical and programming assignments:
■ Theoretical assignments will help to understand the topics of the lecture.

- Programming assignments will help to apply the theory to practical problems.
- Assignment distribution:
between 11.00-11.15 on Mondays in Room 02.09.023.
- Theoretical assignment due:
between 11.00-11.15 on Mondays in Room 02.09.023.
- Assignment presentation: between 14.00-16.00 on Mondays in Room 02.05.014.

To promote team work, please form groups of two or three students in order to solve and submit the assignments.
Active students who solve 60% of the assignments earn a bonus.

- The exam will be oral (max. $\mathbf{3 0}$ mins.).
- The exam will take place 7th-9th of August.
- Students need to be registered prior to the exam: May, 29th-June, 30th via TUM online.
To achieve the bonus, the following requirements have to be fulfilled: Theory:
■ 60% of all theoretical assignments have to be solved.
- The theoretical exercises have to be presented in front of the class.

Programming:

- $\mathbf{6 0 \%}$ of all programming assignments have to be presented during the tutorial.

If someone receives a mark between 1.3 and 4.0 in the final exam, the mark will be improved by $\mathbf{0 . 3}$ and $\mathbf{0 . 4}$, respectively. (Note that marks of 1.0 and 5.0 cannot be improved.)

Prerequisites	Recommended literature *
The course is intended for Master students. Prerequisites: Basic Mathematics: - multivariate analysis and - linear algebra. Basic Computer Science: - programming skills (Matlab, C/C++) and - basic knowledge in algorithms and data structures (e.g., dynamic programming).	Markov Random Fields S. Nowozin, C. H. Lampert. Structured Learning and Prediction in Computer Vision, Foundations and Trends in Computer Graphics and Vision, 2011. D. Koller, N. Friedman. Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009. - A. Blake, P. Kohli, C. Rother. Markov Random Fields for Vision and Image Processing, MIT Press, 2011. In addition, we will also mention recent conference and journal papers.
NW232- Probasilisicic Grapical Modeds in Computer Vision \quad 1. Imtroduction $-9 / 30$	
	Thit Overview Probability theory Conditional Probability
The course page includes general information about the course, where you may also find course materials: - Slides for each lecture (available prior to the lecture) - Assignment sheets (available after the lecture) The internal site of the course page includes - solution sheets (available after the tutorial), - extra announcements. Password: announced on the first lecture	Overview
Overview of the course *	Digital image Administrative Overview Probability theory Conditional Probability
	A color digital image with red, green and blue (RGB) channels can be defined as a function $I: \mathcal{D} \subset \mathbb{Z}^{2} \rightarrow[0,255]^{3 \times N} \subset \mathbb{Z}^{3 \times N}, N=\|\mathcal{D}\| .$ Red Green For an image with size of $W \times H$, the domain $\mathcal{D}:=\{1, \ldots, W\} \times\{1, \ldots, H\} .$ An image I is composed of pixels (picture element or picture cell) $i \in \mathcal{D}, \quad I(i)=\left(r_{i}, g_{i}, b_{i}\right) \in[0,255]^{3} .$ For more details you may refer to the course on Computer Vision I: Variational Methods
IN2320 - Probasilisic Grapiteal Modeds in Computer Vision \quad 1. Intodiction $-13 / 30$	
The goal is to give a binary label $y_{i} \in \mathbb{B} \triangleq\{0,1\}$ for each pixel i, where 0 and 1 mean the background (a.k.a. ground) and the foreground (a.k.a. figure), respectively. Input image Figure-ground segmentation Segmentation Dataset This task can be formulated as finding a labeling: $L: \Omega \subset \mathbb{Z}^{2} \rightarrow \mathbb{B}^{N}, \quad \mathbf{y}=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{B}^{N}$ where $\|\Omega\|=N$ is the number of pixels on the image.	We address the problem of binary image segmentation, where we also assume that we are provided with non-local parameters that are known a priori. For example, one can assume prior knowledge about the shape of the foreground. Exemplar binary segmentation of cars assuming shape prior Source: Lempitsky et al.: Image Segmentation by Branch-and-Mincut. ECCV, 2008.

Thit Semantic image segmentation *

The goal is to give a label $y_{i} \in \mathcal{L}=\{1,2, \ldots, c\}$ for each pixel i according to its semantic meanings. The labeling is defined as

$$
L: \mathcal{D} \rightarrow \mathcal{L}^{N}
$$

Exemplar semantic segmentations
Source: Xia et al: Semantic Segmentation without Annotating Segments. ICCV, 2013.
Online demo: http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction -17 / 39

Suppose that we are given two cameras looking at parallel direction. Let $C_{\text {left }}$ be the origin of the coordinate system and assume that the image planes are co-planar and parallel to the x and y axis.

The intersection of the triangle $\triangle\left(C_{\text {left }}, P, C_{\text {right }}\right)$ and the plane including the images planes is the segment $\overline{p_{1} p_{2}}$. Therefore $\overline{p_{1} p_{2}}$ is parallel to the x-axis. For more details you may refer to the course on Computer Vision II: Multiple View Geometry.
IN2320 - Probabilistic Graphical Modeds in Computer Vision 1. Introduction - 19 / 30

The goal is to recognize an articulated object (e.g., human body) with different connecting parts (e.g., head, torso, left arm, right arm, left leg, right leg).

An object is composed of a number of rigid parts, where each part is modeled as a rectangle.

Stereo matching *
Administrative
Overview Probability theory
Conditional Probability

Left view

Right view

Given two images (i.e. left and right), an observed 2D point p_{1} on the left image corresponds to a 3D point P that is situated on a line in \mathbb{R}^{3}. This line will be observed as a line on the right image.
P can be determined based on p_{1} and p_{2}. We assume that the pixels p_{1} and p_{2}, corresponding to P, have similar visual appearance.
IN2329 - Probabilistic Graphical Models in Computer Vision

1. Introduction - 18 / 39

The goal is to reconstruct $3 D$ points according to corresponding pixels. Usually we assume rectified images (i.e. the directions of the cameras are parallel), which means that the corresponding pixels are situated in horizontal lines.
Remark that a 3D point P is determined by p_{1} and p_{2}. Therefore, for a given p_{1} we want to find the displacement $d_{1} \in \mathcal{L}=\{-d, \ldots, 0, \ldots, d\} \subset \mathbb{Z}$ aligning p_{1} to p_{2}. The labeling is defined as

IN2329 - Probabilistic Graphical Models in Computer Vision

Each part is modeled as a rectangle parameterized by
(x, y, s, θ), where
■ (x, y) means the center of the rectangle,

- $s \in[0,1]$ is a scaling factor, and
- the orientation is given by θ.

In overall, we have a four-dimensional pose space as label space \mathcal{L}.
We denote the label (i.e. locations) of a part by $l_{i}=\left(x_{i}, y_{i}, s_{i}, \theta_{i}\right) \in \mathcal{L}$.
An object (e.g., human body) is given by a configuration

$$
\mathbf{l}=\left(l_{1}, \ldots, l_{N}\right)
$$

where l_{i} specifies the location of part v_{i} and N is the number of object parts.

IN2329 - Probabiistic Graphical Models in Computer Vision

We often want to understand a system when we have imperfect or incomplete information due to, for example, noisy measurement.
There are two main reasons why we might reason under uncertainty:

- Laziness: modeling every detail of a complex system is costly.
- Ignorance: lack of complete understanding of the system.

Probability $P(A)$ refers to a degree of confidence that an event A with uncertain nature will occur.
It is common to assume that $0 \leqslant P(A) \leqslant 1$:

- If $P(A)=1$, we are certain that A occurs,
- while $P(A)=0$ asserts that A will not occur. Administrative Example

Suppose that we are capturing a color (RGB) image.
Consider each pixel on the image separately as trials.
An outcome consists of the intensities of a given pixel.
Sample space is given as

$$
\Omega=\left\{(r, g, b) \in \mathbb{Z}^{3} \mid 0 \leqslant r, g, b \leqslant 255\right\}
$$

An exemplar event A is defined as

$$
A=\{(r, b, g) \mid r, g, b \geqslant 128\}
$$

A set of outcomes $A \subseteq \Omega$ is called an event. An atomic event is an event that contains a single outcome $\omega \in \Omega$.
Example: $A=\{(i, j): i+j=11\}$, i.e. the sum of the numbers showing on the top is equal to eleven.

IN2329 - Probabilistic Graphical Models in Computer Vision

Let A and B be two events from an sample space Ω. We will use the following notations:
A does not occur: $\bar{A}=\Omega \backslash A$

both A and B occur: $A \cap B$

either A or B occur: $A \cup B$

A occurs and B does not: $A \backslash B$

- The \varnothing is called the impossible event; and
- Ω is the sure event.

Example: throwing two "fair dice" * methin

Administrative
Overview Conditional Probability

For this case a discrete probability space $(\Omega, \mathcal{P}(\Omega), P)$ is given by
■ Sample space: $\Omega=\{(i, j): 1 \leqslant i, j \leqslant 6\},|\Omega|=36$.
■ $\mathcal{P}(\Omega)=\{\{(1,1)\}, \ldots,\{(1,1),(1,2)\}, \ldots,\{(1,1),(1,2),(1,3)\}, \ldots\}$.

- The (uniform) probability measure for all $A \in \mathcal{P}(\Omega)$

$$
P(A)=\frac{|A|}{|\Omega|}=\frac{k}{36},
$$

where k is the number of atomic events in A. Such probability space (i.e. all outcomes are equally likely) is called classical probability space.
Example: Let A denote the event that "the sum of the numbers showing on the top is equal to eleven", that is

$$
A=\{(i, j): i+j=11\}=\{(5,6),(6,5)\} .
$$

Hence

$$
P(A)=P(\{(5,6),(6,5)\})=\frac{2}{36} .
$$

Conditional probability

Overview Probability theory Conditional Probability

Conditional probability allows us to reason with partial information.
If $P(B)>0$, the conditional probability of A given B is defined as

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}
$$

This is the probability that A occurs, given we have observed B, i.e. we know the experiment's actual outcome will be in B.

Note that the axioms and rules of probability theory are fulfilled for the conditional probability. (e.g., $P(A \mid B)=1-P(\bar{A} \mid B)$).

Consider the problem of binary segmentation, that is each pixel belongs to either the foreground or the background.
Let us define a pixel to be "bright", if all its (RGB) intensities are at least 128, otherwise the given pixel is considered to be "dark".
Assume we are given the following table with probabilities:

	Dark	Bright	
Foreground	0.163	0.006	0.169
Background	0.116	0.715	0.831
	0.279	0.721	1

Question: What is the probability of a pixel belongs to the foreground, when it is "dark"?
Let A denote the event that "the pixel belongs to the foreground" and let B denote the event that "dark".

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.163}{0.279} \approx 0.584
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

Two events A and B are independent, denoted by $A \perp B$, if

$$
P(A \mid B)=P(A)
$$

equivalently,

$$
P(A \cap B)=P(A) P(B)
$$

If A and B are independent, learning that B happened does not make A more or less likely to occur.

Example: Suppose we roll a "fair" die. Let us consider the events A denoting "the die outcome is even" and B denoting "the die outcome is either 1 or 2 ".
$P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Moreover $A \cap B$ means the event that the outcome is two, that is $P(A \cap B)=\frac{1}{6}$.

$$
P(A \cap B)=\frac{1}{6}=\frac{1}{2} \cdot \frac{1}{3}=P(A) P(B) \quad \Rightarrow \quad A \text { and } B \text { are independent. }
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

A discrete probability space is a triple $(\Omega, \mathcal{P}(\Omega), P)$, where Ω is countable, $P: \mathcal{P}(\Omega) \rightarrow \mathbb{R}$ is σ-additive and for all $A \in \mathcal{P}(\Omega)$ and

$$
0 \leqslant P(A) \leqslant 1 \triangleq P(\Omega)
$$

■ The conditional probability of A given B, is the probability that A occurs, given we have observed B.

- If A and B are independent $(A \perp B)$, learning that B happened does not make A more or less likely to occur.
- A and B are conditionally independent given $C(A \Perp B \mid C)$ means that once we learned C, learning B gives us no additional information about A.

In the next lecture we will learn about

- Random variables
- Probability distributions
- Probabilistic Graphical Models

IN2329 - Probabilistic Graphical Models in Computer Vision

Suppose you are on a game show and you are given the choice of three doors: Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what is behind the doors, opens another door, say No. 3, which has a goat.

Source: wikipedia
He then says to you, "Do you want to pick door No. 2?"
Question: Is it to your advantage to switch your choice?

Starting with the definition of conditional probability $P(B \mid A)$ and multiplying by $\mathrm{P}(\mathrm{A})$ we get the product rule:

$$
P(A \cap B)=P(B \mid A) P(A)
$$

Assume that $P(B) \neq 0$. By making use of the product rule, we can get

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)} .
$$

$P(A \mid B)$ is often called the posteriori probability, and $P(B \mid A)$ is called the likelihood, and $P(A)$ is called the prior probability.

Example: What is the probability that a pixel is "dark", if it belongs to the foreground?
We are given $P(A \mid B)=0.584, P(A)=0.169$ and $P(B)=0.279$.

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{0.584 \cdot 0.279}{0.169} \approx 0.964
$$

IN2329 - Probabilistic Graphical Models in Computer Vision
Conditional independence
Administrative
Overview Probability theory Conditional Probability
Let A, B and C be events. A and B are conditionally independent given C, denoted by $A \Perp B \mid C$, if

$$
P(A \mid C)=P(A \mid B \cap C)
$$

equivalently,

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

A and B are conditionally independent given C means that once we learned C, learning B gives us no additional information about A.

Example: The operation of a car's starter motor (A) is conditionally independent its radio (B) given the status of the battery (C).

