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Agenda for today’s lecture * o-algebra, measure, measure space * m

Random variables Probability distributions Graphical models MRF Factor graph Random variables Probability distributions Graphical models MRF Factor graph

In the previous lecture we learnt about Assume an arbitrary set Q and A < P(2). The set A is a o-algebra over () if the

m  Discrete probability space following conditions are satisfied:

m  Conditional probability 1. JeA
B Independence, conditional independence 2. Ae A= Ae Aie. itis closed under complementation),
3. AeA(ieN)=|J,Ai € Alie. itis closed under countable union).

Today we are going to learn about . . - .
e e @ Y gome It is a consequence of this definition that 2 € A is also satisfied. (See exercise.)

;' san:():l_:a:?iléz (31’ oY) Assume an arbitrary set 2 and a o-algebra A over Q. A function P : A — [0, 0]
- Frobability distributions is called a measure if the following conditions are satisfied:

m Joint distribution (p(y1,. .., o))
. e ' 1. P =0,
@ m  Marginal distribution (p(y1)) 5 P(i?gf—additive.

m  Conditional distribution (p(y | z))

Graphical models Let A be a o-algebra over Q and P : A — [0,0] is a measure. (2, A) is said to
be a measurable space and the triple (2,4, P) is called a measure space.
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Probability space * m - m
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A probability space is a triple (2, A, P), where (2, A) is a measurable space, and
P is a measure such that P(Q2) = 1, called a probability measure.

To summarize:
A triple (2, A, P) is called probability space, if

the sample space (2 is not empty, Ral’ldom Val’iables

A is a o-algebra over €, and

P : A — Ris a function with the following properties:
1. P(A)=0forallAec A

2. P =1
3. o-additive: if A, e A, n=12,...
and A; n A; = J for i # j, then

0 P(A)+ P(B) = P(AU B)
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Example: throwing two “fair” dice * m Preimage mapping m
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We have the sample space 2 = {(i, j) : 1,7 < 6} and the Let X : Q — Q' be an arbitrary mapping. The preimage mapping

(uniform) probability measure P({(i, })} 36, where X1 P(Q) — P(Q) is defined as
(Q,P(Q), P) forms a (discrete) probability space.
X HA)={weQ: X(w)e A}.

In many cases it would be more natural to consider attributes of the outcomes. A
random variable is a way of reporting an attribute of the outcome.

Le us consider the sum of the numbers showing on the dice, defined by the

¢ the : {(1,1),(2,2),(3,3
mapping X : Q — ', X(i,j) =i+ j, where Q' = {2,3,...,12}.

1,1
It can be seen that this mapping leads a probability space (€', P(€), P'), such o
that P : P(Y') — [0,1] is defined as

P'(A") = P({(i,5) : X(5,5) € A'}) .
Example: P'({11}) = P({(5,6), (6,5

IN2329 - Probabilistic Graphical Models in Computer Vision 2. Graphical models - 7 / 37 IN2329 - Probabilistic Graphical Models in Computer Vision 2. Graphical models - 8 / 37



Random variable Example: throwing two “fair” dice * m

Random variables Probability distributions Graphical models MRF Factor graph Random variables Probability distributions Graphical models MRF Factor graph
Let (Q2,.A) and (€', A’) measurable spaces. A mapping X : (Q, A) — (<, A') is We are given two sample spaces 2 = {(i,7) : 1 <i,j <6} and Q' = {2,3,...,12}.
called random variable, if We assume the (uniform) probability measure P over (2, P(f2)). Let us define a

mapping X : (Q,P(Q)) — (¥, P(Y)), where X (i,j) =i+ j.

1A ={weQ: X(w)ecAleA.
() ={ @) } Question: Is X a random variable?

Let X : (2, 4) — (' =R, A') be a random variable 0 x o X NA) = {weQ: X(w)e A} eP(Q)
and P a measure over A. Then P
is satisfied, since for any w’ € ' one can find an w € Q such that X (w) = w'.
P'(A') := Px(4) = P(X™H(4) Therefore X is a random variable. Moreover, P is a probability measure, hence the
~ image measure

Px(A') & P(X71(A"))
is a probability measure on (', P(Q')).

Example: Px({2,4,5}) =P(X7'({2,4,5}))=
P({(1,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2), (4, 1) })= 3ﬁ = —.

defines a measure over A’. Px is called the image A x A
measure of P by X.

Specially, if P is a probability measure then Px is a probability measure over A’.
(See Exercise.)
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Labeling via:random variables m . m
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In the last lecture we defined the labeling L providing a label, taken from a label
set L, for each pixel ¢ on an image.

By applying a random variable
. 3 - - - -

XA(rg,0)eZ”|0<rg,b< 255} — L Probability distributions

we can model the probability of the labeling for a given pixel as

Px (the given pixel has the label 1) .

IN2329 - Probal

Probability distribution h Joint: distribution m
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Note that a random variable is a (measurable) mapping from a probability space Suppose a probability space (2, 4, P). Let X : (2, A4) — (€, A') and
to a measure space. It is neither a variable nor random. Y : (Q,A) > (9", A”) be discrete random variables, where 1, 29, ... denote the
Let X : (2, 4, P) — (@ = R, A’) be a random variable. Then the image measure values of X and y1,ys, .. denote the values of "
Px of P by X is called probability distribution. We introduce the notation
We use the notation p(z) for P(X = ), where A P(X =2,Y =y;) ij=12...
p(z) == P(X = I) PlweQ: X(w) =2}). for the probability of the events

{(X=2;Y =y} ={weQ: X(w) =2; and Y (w) = y;} .

These probabilities p;; form a distribution, called the joint distribution of
X and Y.

Remark that

2.0 =1
T
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Marginal distributions m Example: marginal distribution * m
Random variables Probability distributions Graphical models MRF Factor graph Random variables Probability distributions Graphical models MRF Factor graph
Suppose a probability space (2, A, P). Let X : (2, 4) — (', A’) and Consider the problem of binary segmentation. Let us define a pixel to be “bright”,
Y : (Q,A4) > (2", A”) be discrete random variables, where 1, 29, ... denote the if all its (RGB) intensities are at least 128, otherwise the given pixel is considered
values of X and yi,¥2,... denote the values of Y. to be “dark”.
The distributions defined by the probabilities Assume we are given the following table with probabilities:
Dark  Bright
s E P(X =x;) and g a P(Y =y;) Foreground | 0.163 0.006
Background | 0.116 0.715
are called the marginal distributions of X and of Y, respectively. ‘ 0279 0.721 H 1

Let us consider the marginal distribution of X. Then . o . . .
The marginal distributions of discrete random variables corresponding to the values

=PX =)= ZP(X =Y =y;) = Zpij . of {foreground, background} and {dark, bright} are shown in the last column and
J J last row, respectively.
Similarly, the marginal distribution of Y is given by The following also holds

g = P(Y = ZP(X—% ) Zpu- 2P =2 PX =ai) =33 P(X =2i,Y =yi) =33 pig =1
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Conditional distribution
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_Summary *

Random variables Probability distributions Graphical models MRF Factor graph

Let X and Y be discrete random variables, where x1, zo, ... denote the values of

X and yi1,y2,... denote the values of Y.
The conditional distribution of X given Y is defined by

P(X =mi,Y=yj)

__ by
P(Y =y;)

_ _py
2k Prj

4

PX =z |Y =y;) =
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Random variables Probability distributions Graphical models MRF Factor graph

Graphical models

Bayesian networks

il

Random variables Probability distributions Graphical models MRF Factor graph

Assume a directed, acyclic graphical model G = (V, ), where £ c V x V.

The conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

p(y) =p(i | yk) P(uk | vis vs) pwi) p(y;)
=p(yi | yk) Py | Y1 y;) p(Wirv5) = Py | vk) p(Yis vj» yr)
=p(vi | Yi» yj> Yx) PWir Y5 k) = P(Yir Y5> Yr> Y1) -

The factorization is given as

P(Y =) = [ [ Wi | ¥pau) -
i€V

where p(y; | Ypag (i), assuming that p(y; | &) = p(y:), is a
conditional probability distribution on the parents of node
i€V, denoted by pag(i).

Example:
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Markov.random field

Random variables Probability distributions Graphical models MRF Factor graph

An undirected graphical model G = (V,€) is called Markov Random Field (MRF)
if two nodes are conditionally independent whenever they are not connected. In
other words, for any node i in the graph, the local Markov property holds:

p(Yi | Yingy) = p(Yi | Yavgs) » ‘b QD

where N (i) is denotes the neighbors of node i in the graph.

Alternatively, we can use the following equivalent notation:
Y L Yoag | Yo

where cl(i) = N (i) U {i} is the closed neighborhood of i.

Example:

i LYY,V = p(vilviyeu) =0l ysue), or

p(yi | viryj-yk) = Y1 | Y5 vk) -

m A random variable X : (2, 4, P) — (@ < R, A, Px) is a (measurable)
mapping from a probability space to a measure space.

B The image measure Px of P by X is called probability distribution.

B The function Fx : R > R, Fx(z) = P(x < X) is called cumulative
distribution function of X.

W Probability distributions

4 Joint distribution
# Marginal distribution
4 Conditional distribution
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Graphical models

Random variables Probability distributions Graphical models MRF Factor graph

Probabilistic graphical models encode a joint p(x,y) or conditional p(y | x)
probability distribution such that given some observations x we are provided with a
full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

We will use the following notations

BV denotes a set of output variables (e.g., for pixels) and the corresponding
random variables are denoted by Y; for all i € V.

B The output domain ) is given by the product of individual variable domains
Vi (e.g., asingle label set £), thatis Y = X;., Vs

B The input domain X is application dependent (e.g., X is a set of images).

B The realization Y = y means that Y; = y; for all i € V.

m G = (V&) is an (un)directed graph, which encodes the conditional

independence assumption.

Random variables Probability distributions Graphical models MRF Factor graph

Gibbs: distribution

Random variables Probability distributions Graphical models MRF Factor graph

A probability distribution p(y) on an undirected graphical model G = (V,€) is
called Gibbs distribution if it can be factorized into potential functions

wc(}’c) >0

defined on cliques (i.e. fully connected subgraph) that cover all nodes and edges of
G. That is,

py) = 5 [T velve)

ceCa

where C denotes the set of all (maximal) cliques in G and

Z = Z H wc(yc)'

yeY ceCq

is the normalization constant. Z is also known as partition function.
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_Examples *
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Hammersley-Clifford theorem

U

Random variables Probability distributions Graphical models MRF Factor graph

CGl = {{'L}¢ {]}7 {k}7 {i7j}7 {]7 k}}' hence

p(y) = %1/11'(Zli)wj(yj)d’k(yk)l/)i]’(yi’yj)l/’jk(yﬁyk) Gi

Ca, = 21070 g5 (ie. all nonempty subsets of V)

1
p(Y) = E H wc(yc) "

Ca, ={{i}, {4}, (k1. {1}, G
{67} {d kY (6 1 (k) 0, 0
{05, kY, 4d, 5, 0 i &, 13, 45, K, 1,
{i. 4.k, 13}
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Proof of the Hammersley-Clifford theore

(backward direction) *

Random variables Probability distributions Graphical models MRF Factor graph

Let cl(i) = N; U {i} and assume that p(y) follows Gibbs-distribution.

Zv\cl(i) p(y) Zv\cl(i) % [Teecy, Yelye)

Wi yn) _ _ .
Zyl Zv\d(i) p(y) Zyi Zv\cl(z‘) % HCECG Ye(ye)

p(yNi)

p
p(yi lyn) =

Let us define two sets: C; := {ce€ Cg :i € ¢} and
Ri:={ceCq:i¢c}. Obviously, Cq = C; uR; for all
ieV.

Example:

i | )= Zv\cl(i) HceCi Ye(ye) ndeR,, Ya(ya)
PRETY N 2y 2@y eee, Ye(ve) [aer, Ya(ya)
[ e, ¥e(ye) - Zv\cl(i) [ ier, Ya(ya)

- 2y eee, Ye(ye) - Zvag uer, $a(ya) g: z {{((;,Jl; , E;”];)) }}
_ e, Yelye)
Zyi Hceci 1[’0(}’.:)
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Binomial theorem *

Graphical models MRF

Y (n—k), k
x y b

Random variables Probability distributions Factor graph

Reminder: Let x,y € R and n € N, then

M=

(z+y)" =
k

where (}) = ﬁlk)‘

We will use the following identity

0=(1-1)"= i(—l)’c(D .

k=0

Reminder. A k-combination of a set S is a subset of & distinct elements of S. If
|S| = n, then number of k-combinations is equal to ().
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Proof of the Clifford-Hammersley theore
(forward direction) *

Probability distributions Graphical models MRF

H (q‘I(YL}'wwm))yﬂ*) 4

wes\{a,b} (ywu(a}) q(ywu(b}

Random variables Factor graph

We have

fs(Ys = YS) =

ayw) & PYws Yo U > Vi fas)) _ e | Yo U3 Y fapy)
Q(ywu{a}) P(Ya> Yo y§7 yg\{a,b}) P(Ya | Y, y{f, yg\{a,b})
atp PO 1 Yur U0 Ui gary) P00 U ry)
PWa | Yo Us Ui japy) PV Y Us Ui ay)

A q(Ywu{b})
4(Ywolap)

Therefore

fs(Y5=ys)= for 3”8¢CG.

[T 1=

wSs\{a,b}

Let G = (V,€&) be an undirected graphical model. The Hammersley-Clifford
theorem tells us that the followings are equivalent:

m G is an MRF model.
B The joint probability distribution p(y) on G is a Gibbs-distribution.

An MRF defines a family of joint probability distributions by means of an
undirected graph G = (V,£), £ <V x V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random
variables corresponding to V.
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Proof of the Hammersley-Clifford theore
(backward direction) *
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2. Graphical models - 26 / 37

Random variables

o | yy) = gzze e
‘ Zy, HceCi Ye(ye)
o I_L:ECZ ’/’C(YC) ) Hce’Ri 1/’c(}’c)
- Zyl nceci Ye(ye) l_lceR1 Ye(ye)
_ HeeCG Ye(ye)
B Zy, HceCG Ye(ye)
_ py)  _ plynyn)
pywa)  pywy)
=pYi | ywgy) -

Therefore the local Markov property holds for any node i € V.
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Proof of the Clifford-Hammersley theore
(forward direction) *
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We define a candidate potential function for any subset s £V as follows:
—1lsl=I=l
[s(Ys=ys) = HP()’z,y;)( ! )

zEs
where p(y.,y%) is a strictly positive distribution and y* means an (arbitrary but
fixed) default realization of the variables Y5 for the set z = V\{z}. We will use the

following notation: a(y2) = ply.,yh) .

Assume that the local Markov property holds for any node i € V.
First, we show that, if s is not a clique, then f,(ys) = 1. For this sake, let us
assume that s is not a clique, therefore there exist a,b € s that are not connected

to each other. Hence (va) 4 ) (—1%)
Y. — v = (alel=lely _ (M) 7
fS( N yS) HQ(Yz) H ‘I(YWu{a}) Q(ywu(b))

zEs ws\{a,b}

where —1* meaning either 1 or -1 is not important at all.
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Proof of the Clifford-Hammersley theore
(forward direction) *
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We also show that [ [,cy, fs(ys) = p(y). Consider any z = V and the
corresponding factor ¢(y.). Let n = [V| —|z|.
m g(y.) occurs in f.(y.) as q(y.) ") = g(y.).
W ¢(y-) also occurs in the functions f,(ys) for s =V, where |s| = |z| + 1. The
number of such factors is (711) The exponent of those factors is
_qlsl=lel = g1 = g,
B ¢(y.) occurs in the functions fs(ys) for s €V, where |s| = |z| + 2. The
number of such factors is () and their exponent is —11s1=1sl = 1,
If we multiply all those factors, we get

a(y2)" a(y-)"() q(y) ) .. g(y) TG = gly) DG+ E 07
=q(y.)’=1.

So all factors cancel themselves out except of ¢(y), that is
p(Y) = Hcgcc fc(Yt:)- |
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Factor graph

_Examples *

Graphical models MRF Factor graph

An exemplar MRF  p;(y) = Z%i,/)i]'kz(yi,yj,ykayl)

Random variables Probability distributions

pa(y) = Z%wij(yi,yj) “Pik(Yis Yi) - Yuyir i)
Wi (Yss yk) - iy, v) - Yk, vi)

Factor graphs are universal, explicit about the factorization, hence it is easier to
work with them.
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Factor graph

U

Factor graph

MRF

Factor graph

Random variables Probability distributions Graphical models MRF

Factor graphs are undirected graphical models that make the

factorization explicit of the probability function.

A factor graph G = (V, F,&’) consists of

m variable nodes V () and factor nodes F (M),

B edges &' = V x F between variable and factor nodes

m N:F—2"isthe scope of a factor, defined as the set of
neighboring variables, i.e. N(F) ={ieV :(i,F) € £}.

A family of distribution is defined that factorizes as:

ply) = % [Tvrtyna) with Z2=3 ] vrne) -

FeF yeY FeF

()

Each factor F' € F connects a subset of nodes, hence we write
yr=YNFE) = Yo, 7y'U\F\)‘
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il

Factor graph

_Summary *

Random variables Probability distributions Graphical models MRF

m A graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

B A Bayesian network is a directed acyclic graphical model G = (V, £), where
conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

B An MRF defines a family of joint probability distributions by means of an
undirected graph G = (V, ), where the graph encodes conditional
independence assumptions between the random variables.

B Factor graphs are universal, explicit about the factorization, hence it is easier
to work with them.

In the next lecture we will learn about
m  Conditional random field (CRF)

B Inference for graphical models

B Binary image segmentation

B EM algorithm

Source: Berkeley Segmentation Dataset
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