

Csaba Domokos
Summer Semester 2017

4it)
Random variables
Agenda for today's lecture *
Probability distributions Graphical models

In the previous lecture we learnt about

- Discrete probability space
- Conditional probability
- Independence, conditional independence

Today we are going to learn about

1. Random variables $\left(Y_{1}, \ldots, Y_{9}\right)$
2. Probability distributions

■ Joint distribution $\left(p\left(y_{1}, \ldots, y_{9}\right)\right)$

- Marginal distribution $\left(p\left(y_{1}\right)\right)$
- Conditional distribution $(p(y \mid x))$

3. Graphical models

A probability space is a triple (Ω, \mathcal{A}, P), where (Ω, \mathcal{A}) is a measurable space, and P is a measure such that $P(\Omega)=1$, called a probability measure.

To summarize:
A triple (Ω, \mathcal{A}, P) is called probability space, if

- the sample space Ω is not empty,
- \mathcal{A} is a σ-algebra over Ω, and
- $P: \mathcal{A} \rightarrow \mathbb{R}$ is a function with the following properties:

1. $P(A) \geqslant 0$ for all $A \in \mathcal{A}$
2. $P(\Omega)=1$
3. σ-additive: if $A_{n} \in \mathcal{A}, n=1,2$,
and $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$, then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

We have the sample space $\Omega=\{(i, j): 1 \leqslant i, j \leqslant 6\}$ and the (uniform) probability measure $P(\{(i, j)\})=\frac{1}{36}$, where $(\Omega, \mathcal{P}(\Omega), P)$ forms a (discrete) probability space.

In many cases it would be more natural to consider attributes of the outcomes. A random variable is a way of reporting an attribute of the outcome.
Le us consider the sum of the numbers showing on the dice, defined by the mapping $X: \Omega \rightarrow \Omega^{\prime}, X(i, j)=i+j$, where $\Omega^{\prime}=\{2,3, \ldots, 12\}$.
It can be seen that this mapping leads a probability space ($\left.\Omega^{\prime}, \mathcal{P}\left(\Omega^{\prime}\right), P^{\prime}\right)$, such that $P^{\prime}: \mathcal{P}\left(\Omega^{\prime}\right) \rightarrow[0,1]$ is defined as

$$
P^{\prime}\left(A^{\prime}\right)=P\left(\left\{(i, j): X(i, j) \in A^{\prime}\right\}\right) .
$$

Example: $P^{\prime}(\{11\})=P(\{(5,6),(6,5)\})=\frac{2}{36}$

2. Graphical models

Whit σ-algebra, measure, measure space *

Random variables Probability distributions Graphical models MRF

Assume an arbitrary set Ω and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. The set \mathcal{A} is a σ-algebra over Ω if the following conditions are satisfied:

1. $\varnothing \in \mathcal{A}$,
2. $A \in \mathcal{A} \Rightarrow \bar{A} \in \mathcal{A}$ (i.e. it is closed under complementation),
3. $A_{i} \in \mathcal{A}(i \in \mathbb{N}) \Rightarrow \bigcup_{i=0}^{\infty} A_{i} \in \mathcal{A}$ (i.e. it is closed under countable union).

It is a consequence of this definition that $\Omega \in \mathcal{A}$ is also satisfied. (See exercise.)
Assume an arbitrary set Ω and a σ-algebra \mathcal{A} over Ω. A function $P: \mathcal{A} \rightarrow[0, \infty]$ is called a measure if the following conditions are satisfied:

1. $P(\varnothing)=0$,
2. P is σ-additive.

Let \mathcal{A} be a σ-algebra over Ω and $P: \mathcal{A} \rightarrow[0, \infty]$ is a measure. (Ω, \mathcal{A}) is said to be a measurable space and the triple (Ω, \mathcal{A}, P) is called a measure space.

IN2329 - Probabilistic Graphical Models in Computer Vision
2. Graphical models -4 / 37

Random variables

Preimage mapping

Let (Ω, \mathcal{A}) and $\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ measurable spaces. A mapping $X:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ is called random variable, if

$$
X^{-1}\left(A^{\prime}\right)=\left\{\omega \in \Omega: X(\omega) \in A^{\prime}\right\} \in \mathcal{A}
$$

Let $X:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime} \subseteq \mathbb{R}, \mathcal{A}^{\prime}\right)$ be a random variable and P a measure over \mathcal{A}. Then

$$
P^{\prime}\left(A^{\prime}\right):=P_{X}\left(A^{\prime}\right) \triangleq P\left(X^{-1}\left(A^{\prime}\right)\right)
$$

defines a measure over $\mathcal{A}^{\prime} . P_{X}$ is called the image
 measure of P by X.

Specially, if P is a probability measure then P_{X} is a probability measure over \mathcal{A}^{\prime}. (See Exercise.)

In the last lecture we defined the labeling L providing a label, taken from a label set \mathcal{L}, for each pixel i on an image.

By applying a random variable

$$
X:\left\{(r, g, b) \in \mathbb{Z}^{3} \mid 0 \leqslant r, g, b \leqslant 255\right\} \rightarrow \mathcal{L}
$$

we can model the probability of the labeling for a given pixel as
$P_{X}($ the given pixel has the label $l)$.

IN2320 - Probabilistic Graphical Models in Computer Vision

2. Graphical models - 11 / 37

Note that a random variable is a (measurable) mapping from a probability space to a measure space. It is neither a variable nor random.

Let $X:(\Omega, \mathcal{A}, P) \rightarrow\left(\Omega^{\prime} \subseteq \mathbb{R}, \mathcal{A}^{\prime}\right)$ be a random variable. Then the image measure P_{X} of P by X is called probability distribution.
We use the notation $p(x)$ for $P(X=x)$, where

$$
p(x):=P(X=x) \triangleq P(\{\omega \in \Omega: X(\omega)=x\}) .
$$

2. Graphical models -13 / 37

Suppose a probability space (Ω, \mathcal{A}, P). Let $X:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ and
$Y:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime \prime}, \mathcal{A}^{\prime \prime}\right)$ be discrete random variables, where x_{1}, x_{2}, \ldots denote the values of X and y_{1}, y_{2}, \ldots denote the values of Y.
The distributions defined by the probabilities

$$
p_{i} \triangleq P\left(X=x_{i}\right) \quad \text { and } \quad q_{j} \triangleq P\left(Y=y_{j}\right)
$$

are called the marginal distributions of X and of Y, respectively. Let us consider the marginal distribution of X. Then

$$
p_{i}=P\left(X=x_{i}\right)=\sum_{j} P\left(X=x_{i}, Y=y_{j}\right)=\sum_{j} p_{i j}
$$

Similarly, the marginal distribution of Y is given by

$$
q_{j}=P\left(Y=y_{j}\right)=\sum_{i} P\left(X=x_{i}, Y=y_{j}\right)=\sum_{i} p_{i j}
$$

Suppose a probability space (Ω, \mathcal{A}, P). Let $X:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime}, \mathcal{A}^{\prime}\right)$ and
$Y:(\Omega, \mathcal{A}) \rightarrow\left(\Omega^{\prime \prime}, \mathcal{A}^{\prime \prime}\right)$ be discrete random variables, where x_{1}, x_{2}, \ldots denote the values of X and y_{1}, y_{2}, \ldots denote the values of Y.
We introduce the notation

$$
p_{i j} \triangleq P\left(X=x_{i}, Y=y_{j}\right) \quad i, j=1,2, \ldots
$$

for the probability of the events

$$
\left\{X=x_{i}, Y=y_{j}\right\}:=\left\{\omega \in \Omega: X(\omega)=x_{i} \text { and } Y(\omega)=y_{j}\right\}
$$

These probabilities $p_{i j}$ form a distribution, called the joint distribution of X and Y.

Remark that

$$
\sum_{i} \sum_{j} p_{i j}=1
$$

IN2329 - Probabilistic Graphical Models in Computer Vision

Consider the problem of binary segmentation. Let us define a pixel to be "bright", if all its (RGB) intensities are at least 128, otherwise the given pixel is considered to be "dark".
Assume we are given the following table with probabilities:

	Dark	Bright	
Foreground	0.163	0.006	0.169
Background	0.116	0.715	0.831
	0.279	0.721	1

The marginal distributions of discrete random variables corresponding to the values of \{foreground, background\} and \{dark, bright \} are shown in the last column and last row, respectively.
The following also holds

$$
\sum_{i} p_{i}=\sum_{i} P\left(X=x_{i}\right)=\sum_{i} \sum_{j} P\left(X=x_{i}, Y=y_{i}\right)=\sum_{i} \sum_{j} p_{i j}=1 .
$$

Conditional distribution

Random variables
Let X and Y be discrete random variables, where x_{1}, x_{2}, \ldots denote the values of X and y_{1}, y_{2}, \ldots denote the values of Y.
The conditional distribution of X given Y is defined by

$$
P\left(X=x_{i} \mid Y=y_{j}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(Y=y_{j}\right)}=\frac{p_{i j}}{\sum_{k} p_{k j}}=\frac{p_{i j}}{q_{j}} .
$$

Graphical models

Random variables	Bayesian networks	Probability distributions	Graphical models
RRF	Factor graph		

Assume a directed, acyclic graphical model $G=(\mathcal{V}, \mathcal{E})$, where $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
The factorization is given as

$$
p(\mathbf{Y}=\mathbf{y})=\prod_{i \in \mathcal{V}} p\left(y_{i} \mid \mathbf{y}_{\mathrm{pa}_{G}(i)}\right)
$$

where $p\left(y_{i} \mid \mathbf{y}_{\text {pa }_{G}(i)}\right)$, assuming that $p\left(y_{i} \mid \varnothing\right) \equiv p\left(y_{i}\right)$, is a conditional probability distribution on the parents of node
 $i \in \mathcal{V}$, denoted by $\mathrm{pa}_{G}(i)$.

The conditional independence assumption is encoded by G that is a variable is conditionally independent of its non-descendants given its parents.

$$
\text { Example: } \quad \begin{aligned}
p(\mathbf{y}) & =p\left(y_{l} \mid y_{k}\right) p\left(y_{k} \mid y_{i}, y_{j}\right) p\left(y_{i}\right) p\left(y_{j}\right) \\
& =p\left(y_{l} \mid y_{k}\right) p\left(y_{k} \mid y_{i}, y_{j}\right) p\left(y_{i}, y_{j}\right)=p\left(y_{l} \mid y_{k}\right) p\left(y_{i}, y_{j}, y_{k}\right) \\
& =p\left(y_{l} \mid y_{i}, y_{j}, y_{k}\right) p\left(y_{i}, y_{j}, y_{k}\right)=p\left(y_{i}, y_{j}, y_{k}, y_{l}\right)
\end{aligned}
$$

IN2329 - Probabiistic Graphical Models in Computer Vision
2. Graphical models -18 / 37

Probabilistic graphical models encode a joint $p(\mathbf{x}, \mathbf{y})$ or conditional $p(\mathbf{y} \mid \mathbf{x})$ probability distribution such that given some observations \mathbf{x} we are provided with a full probability distribution over all feasible solutions.
The graphical models allow us to encode relationships between a set of random variables using a concise language, by means of a graph.

We will use the following notations
■ \mathcal{V} denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y_{i} for all $i \in \mathcal{V}$.

- The output domain \mathcal{Y} is given by the product of individual variable domains \mathcal{Y}_{i} (e.g., a single label set \mathcal{L}), that is $\mathcal{Y}=X_{i \in \mathcal{V}} \mathcal{Y}_{i}$.
■ The input domain \mathcal{X} is application dependent (e.g., \mathcal{X} is a set of images).
■ The realization $\mathbf{Y}=\mathbf{y}$ means that $Y_{i}=y_{i}$ for all $i \in \mathcal{V}$.
- $G=(\mathcal{V}, \mathcal{E})$ is an (un)directed graph, which encodes the conditional independence assumption.

IN2329 - Probabilistic Graphical Models in Computer Vision
2. Graphical models $-20 / 37$

MRF

A probability distribution $p(\mathbf{y})$ on an undirected graphical model $G=(\mathcal{V}, \mathcal{E})$ is called Gibbs distribution if it can be factorized into potential functions

$$
\psi_{c}\left(\mathbf{y}_{c}\right)>0
$$

defined on cliques (i.e. fully connected subgraph) that cover all nodes and edges of G. That is,

$$
p(\mathbf{y})=\frac{1}{Z} \prod_{c \in \mathcal{C}_{G}} \psi_{c}\left(\mathbf{y}_{c}\right)
$$

where \mathcal{C}_{G} denotes the set of all (maximal) cliques in G and

$$
Z=\sum_{\mathbf{y} \in \mathcal{Y}} \prod_{c \in \mathcal{C}_{G}} \psi_{c}\left(\mathbf{y}_{c}\right)
$$

is the normalization constant. Z is also known as partition function.

G_{1}
$p(\mathbf{y})=\frac{1}{Z} \psi_{i}\left(y_{i}\right) \psi_{j}\left(y_{j}\right) \psi_{k}\left(y_{k}\right) \psi_{i j}\left(y_{i}, y_{j}\right) \psi_{j k}\left(y_{j}, y_{k}\right)$
$\mathcal{C}_{G_{2}}=2^{\{i, j, k, l\}} \backslash \varnothing$ (i.e. all nonempty subsets of \mathcal{V}_{2})

$$
p(\mathbf{y})=\frac{1}{Z} \prod_{c \in 2^{\{i, j, k, l\}} \backslash \varnothing} \psi_{c}\left(\mathbf{y}_{c}\right)
$$

$\mathcal{C}_{G_{2}}=\{\{i\},\{j\},\{k\},\{ \}\}$,

G_{2}
$\{i, j\},\{i, k\},\{i, l\},\{j, k\},\{j, l\}$,
$\{i, j, k\},\{i, j, l\},\{i, k, l\},\{j, k, l\}$,
$\{i, j, k, l\}\}$

Let $G=(\mathcal{V}, \mathcal{E})$ be an undirected graphical model. The Hammersley-Clifford theorem tells us that the followings are equivalent:

- G is an MRF model.

■ The joint probability distribution $p(\mathbf{y})$ on G is a Gibbs-distribution.
An MRF defines a family of joint probability distributions by means of an undirected graph $G=(\mathcal{V}, \mathcal{E}), \mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ (there are no self-edges), where the graph encodes conditional independence assumptions between the random variables corresponding to \mathcal{V}.

Let $\operatorname{cl}(i)=N_{i} \cup\{i\}$ and assume that $p(\mathbf{y})$ follows Gibbs-distribution.

$$
p\left(y_{i} \mid \mathbf{y}_{N_{i}}\right)=\frac{p\left(y_{i}, \mathbf{y}_{N_{i}}\right)}{p\left(\mathbf{y}_{N_{i}}\right)}=\frac{\sum_{\mathcal{V} \backslash \mathrm{cl}(i)} p(\mathbf{y})}{\sum_{y_{i}} \sum_{\mathcal{V} \backslash \mathrm{cl}(i)} p(\mathbf{y})}=\frac{\sum_{\mathcal{V} \backslash \operatorname{cl}(i)} \frac{1}{Z} \prod_{c \in \mathcal{C}_{G}} \psi_{c}\left(\mathbf{y}_{c}\right)}{\sum_{y_{i}} \sum_{\mathcal{V} \backslash \mathrm{cl}(i)} \frac{1}{Z} \prod_{c \in \mathcal{C}_{G}} \psi_{c}\left(\mathbf{y}_{c}\right)}
$$

Let us define two sets: $\mathcal{C}_{i}:=\left\{c \in \mathcal{C}_{G}: i \in c\right\}$ and
$\mathcal{R}_{i}:=\left\{c \in \mathcal{C}_{G}: i \notin c\right\}$. Obviously, $\mathcal{C}_{G}=\mathcal{C}_{i} \cup \mathcal{R}_{i}$ for all $i \in \mathcal{V}$.
$p\left(y_{i} \mid \mathbf{y}_{N_{i}}\right)=\frac{\sum_{\mathcal{V} \backslash \mathrm{cl}(i)} \prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right) \prod_{d \in \mathcal{R}_{i}} \psi_{d}\left(\mathbf{y}_{d}\right)}{\sum_{y_{i}} \sum_{\mathcal{V} \backslash \mathrm{cl}(i)} \prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right) \prod_{d \in \mathcal{R}_{i}} \psi_{d}\left(\mathbf{y}_{d}\right)}$

$$
\begin{aligned}
& =\frac{\prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right) \cdot \sum_{\mathcal{V c l i c i}} \prod_{d \in \mathcal{R}_{i}} \psi_{d}\left(\mathbf{y}_{d}\right)}{\sum_{y_{i}} \prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right) \cdot \sum_{\mathcal{V C l d (i)}(i)} \prod_{d \in \mathcal{R}_{i}} \psi_{d}\left(\mathbf{y}_{d}\right)} \\
& =\frac{\prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)}{\sum_{y_{i}} \prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)}
\end{aligned}
$$

$C_{i}=\{(i, j),(i, k)\}$

$$
R_{i}=\{(j, l),(k, l)\}
$$

IN2320 - Probabilistic Graphical Models in Computer Vision

Reminder: Let $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$, then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{(n-k)} y^{k}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
We will use the following identity

$$
0=(1-1)^{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}
$$

Reminder: A k-combination of a set \mathcal{S} is a subset of k distinct elements of \mathcal{S}. If $|\mathcal{S}|=n$, then number of k-combinations is equal to $\binom{n}{k}$.

 (backward direction) *
Random variables Probability distributions Graphical models

$$
\begin{aligned}
p\left(y_{i} \mid \mathbf{y}_{N_{i}}\right) & =\frac{\prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)}{\sum_{y_{i}} \prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)} \\
& =\frac{\prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)}{\sum_{y_{i}} \prod_{c \in \mathcal{C}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)} \cdot \frac{\prod_{c \in \mathcal{R}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)}{\prod_{c \in \mathcal{R}_{i}} \psi_{c}\left(\mathbf{y}_{c}\right)} \\
& =\frac{\prod_{c \in \mathcal{C}_{C}} \psi_{c}\left(\mathbf{y}_{c}\right)}{\sum_{y_{i}} \prod_{c \in \mathcal{C}_{G}} \psi_{c}\left(\mathbf{y}_{c}\right)} \\
& =\frac{p(\mathbf{y})}{p\left(\mathbf{y}_{\mathcal{V} \backslash\{i\})}\right)}=\frac{p\left(y_{i}, \mathbf{y}_{\mathcal{V} \backslash\{i\}}\right)}{p\left(\mathbf{y}_{\mathcal{V} \backslash\{i\}}\right)} \\
& =p\left(y_{i} \mid \mathbf{y}_{\mathcal{V} \backslash\{i\}}\right) .
\end{aligned}
$$

Therefore the local Markov property holds for any node $i \in \mathcal{V}$.

We define a candidate potential function for any subset $s \subseteq \mathcal{V}$ as follows:

$$
f_{s}\left(\mathbf{Y}_{s}=\mathbf{y}_{s}\right)=\prod_{z \subseteq s} p\left(\mathbf{y}_{z}, \mathbf{y}_{z}^{*}\right)^{\left(-1^{|s|-|z|}\right)}
$$

where $p\left(\mathbf{y}_{z}, \mathbf{y}_{\bar{Z}}^{*}\right)$ is a strictly positive distribution and $\mathbf{y}_{\bar{Z}}^{*}$ means an (arbitrary but fixed) default realization of the variables $\mathbf{Y}_{\bar{z}}$ for the set $\bar{z}=\mathcal{V} \backslash\{z\}$. We will use the following notation:

$$
q\left(\mathbf{y}_{z}\right):=p\left(\mathbf{y}_{z}, \mathbf{y}_{\bar{z}}^{*}\right)
$$

Assume that the local Markov property holds for any node $i \in \mathcal{V}$.
First, we show that, if s is not a clique, then $f_{s}\left(\mathbf{y}_{s}\right)=1$. For this sake, let us assume that s is not a clique, therefore there exist $a, b \in s$ that are not connected

$$
\begin{aligned}
& \text { to each other. Hence } \\
& \qquad f_{s}\left(\mathbf{Y}_{s}=\mathbf{y}_{s}\right)=\prod_{z \subseteq s} q\left(\mathbf{y}_{z}\right)^{\left(-1^{|s|-|z|}\right)}=\prod_{w \subseteq s \backslash\{a, b\}}\left(\frac{q\left(\mathbf{y}_{w}\right) q\left(\mathbf{y}_{w \cup\{a, b\}}\right)}{q\left(\mathbf{y}_{w \cup\{a\}}\right) q\left(\mathbf{y}_{w \cup\{b\}}\right)}\right)^{\left(-1^{*}\right)},
\end{aligned}
$$

where -1^{*} meaning either 1 or -1 is not important at all.

IN2329 - Probabilistic Graphical Models in Computer Vision

We also show that $\prod_{s \subseteq \mathcal{V}} f_{s}\left(\mathbf{y}_{s}\right)=p(\mathbf{y})$. Consider any $z \subset \mathcal{V}$ and the
corresponding factor $q\left(\mathbf{y}_{z}\right)$. Let $n=|\mathcal{V}|-|z|$.
■ $q\left(\mathbf{y}_{z}\right)$ occurs in $f_{z}\left(\mathbf{y}_{z}\right)$ as $q\left(\mathbf{y}_{z}\right)^{\left(-1^{0}\right)}=q\left(\mathbf{y}_{z}\right)$.

- $q\left(\mathbf{y}_{z}\right)$ also occurs in the functions $f_{s}\left(\mathbf{y}_{s}\right)$ for $s \subseteq \mathcal{V}$, where $|s|=|z|+1$. The number of such factors is $\binom{n}{1}$. The exponent of those factors is $-1^{|s|-|z|}=-1^{1}=-1$.
- $q\left(\mathbf{y}_{z}\right)$ occurs in the functions $f_{s}\left(\mathbf{y}_{s}\right)$ for $s \subseteq \mathcal{V}$, where $|s|=|z|+2$. The number of such factors is $\binom{n}{2}$ and their exponent is $-1^{|s|-|z|}=1$.
If we multiply all those factors, we get

$$
\begin{aligned}
q\left(\mathbf{y}_{z}\right)^{1} q\left(\mathbf{y}_{z}\right)^{-\binom{n}{1}} q\left(\mathbf{y}_{z}\right)^{\binom{n}{2}} \ldots q\left(\mathbf{y}_{z}\right)^{\left(-1^{n}\right)\binom{n}{n}} & =q\left(\mathbf{y}_{z}\right)^{\binom{n}{0}-\binom{n}{1}+\binom{n}{2}+\cdots+(-1)^{n}\binom{n}{n}} \\
& =q\left(\mathbf{y}_{z}\right)^{0}=1 .
\end{aligned}
$$

So all factors cancel themselves out except of $q(\mathbf{y})$, that is $p(\mathbf{y})=\prod_{c \subseteq \mathcal{C}_{G}} f_{c}\left(\mathbf{y}_{c}\right)$.

Factor graph

An exemplar MRF $\quad p_{1}(\mathbf{y})=\frac{1}{Z_{1}} \psi_{i j k l}\left(y_{i}, y_{j}, y_{k}, y_{l}\right)$

$$
p_{2}(\mathbf{y})=\frac{1}{Z_{2}} \psi_{i j}\left(y_{i}, y_{j}\right) \cdot \psi_{i k}\left(y_{i}, y_{k}\right) \cdot \psi_{i l}\left(y_{i}, y_{l}\right)
$$

$$
\cdot \psi_{j k}\left(y_{j}, y_{k}\right) \cdot \psi_{j l}\left(y_{j}, y_{l}\right) \cdot \psi_{k l}\left(y_{k}, y_{l}\right)
$$

Factor graphs are universal, explicit about the factorization, hence it is easier to work with them.

Probability theory

1. Marek Capiński and Ekkerhard Kopp. Measure, Integral and Probability. Springer, 1998
2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009

Graphical models

3. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009
4. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4), 2010
5. J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished, 1971
6. Samson Cheung. Proof of Hammersley-Clifford theorem. Unpublished, February 2008
