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In the previous lecture we learnt about

■ Discrete probability space
■ Conditional probability
■ Independence, conditional independence

Y1 Y2 Y3

Y4 Y5 Y6

Y7 Y8 Y9

Today we are going to learn about

1. Random variables (Y1, . . . , Y9)
2. Probability distributions

■ Joint distribution (ppy1, . . . , y9q)
■ Marginal distribution (ppy1q)
■ Conditional distribution (ppy | xq)

3. Graphical models

σ-algebra, measure, measure space ˚
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Assume an arbitrary set Ω and A Ď PpΩq. The set A is a σ-algebra over Ω if the
following conditions are satisfied:

1. H P A,
2. A P A ñ Ā P A (i.e. it is closed under complementation),
3. Ai P A pi P Nq ñ Ť8

i“0Ai P A (i.e. it is closed under countable union).

It is a consequence of this definition that Ω P A is also satisfied. (See exercise.)

Assume an arbitrary set Ω and a σ-algebra A over Ω. A function P : A Ñ r0,8s
is called a measure if the following conditions are satisfied:

1. P pHq “ 0,
2. P is σ-additive.

Let A be a σ-algebra over Ω and P : A Ñ r0,8s is a measure. pΩ,Aq is said to
be a measurable space and the triple pΩ,A, P q is called a measure space.

Probability space ˚
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A probability space is a triple pΩ,A, P q, where pΩ,Aq is a measurable space, and
P is a measure such that P pΩq “ 1, called a probability measure.

To summarize:
A triple pΩ,A, P q is called probability space, if

■ the sample space Ω is not empty,
■ A is a σ-algebra over Ω, and
■ P : A Ñ R is a function with the following properties:

1. P pAq ě 0 for all A P A
2. P pΩq “ 1
3. σ-additive: if An P A, n “ 1, 2, . . .

and Ai XAj “ H for i ‰ j, then

P p
8ď

n“1

Anq “
8ÿ

n“1

P pAnq .

Ω

B
A

0 1P pAq ` P pBq “ P pA Y Bq

Random variables
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Example: throwing two “fair” dice ˚
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We have the sample space Ω “ tpi, jq : 1 ď i, j ď 6u and the
(uniform) probability measure P ptpi, jquq “ 1

36 , wherepΩ,PpΩq, P q forms a (discrete) probability space.

In many cases it would be more natural to consider attributes of the outcomes. A
random variable is a way of reporting an attribute of the outcome.

Le us consider the sum of the numbers showing on the dice, defined by the
mapping X : Ω Ñ Ω1, Xpi, jq “ i` j, where Ω1 “ t2, 3, . . . , 12u.
It can be seen that this mapping leads a probability space pΩ1,PpΩ1q, P 1q, such
that P 1 : PpΩ1q Ñ r0, 1s is defined as

P 1pA1q “ P ptpi, jq : Xpi, jq P A1uq .
Example: P 1pt11uq “ P ptp5, 6q, p6, 5quq “ 2

36 .

Preimage mapping
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Let X : Ω Ñ Ω1 be an arbitrary mapping. The preimage mapping
X´1 : PpΩ1q Ñ PpΩq is defined as

X´1pA1q “ tω P Ω : Xpωq P A1u .

Ω Ω1X

X´1PpΩq PpΩ1q

tp5, 6q, p6, 5qu

tp1, 1q, p2, 2q, p3, 3qu

tp1, 1qu

t1, 2u

t2, 4, 6u

t11u



Random variable
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Let pΩ,Aq and pΩ1,A1q measurable spaces. A mapping X : pΩ,Aq Ñ pΩ1,A1q is
called random variable, if

X´1pA1q “ tω P Ω : Xpωq P A1u P A .

Let X : pΩ,Aq Ñ pΩ1 Ď R,A1q be a random variable
and P a measure over A. Then

P 1pA1q :“ PXpA1q ∆“ P pX´1pA1qq
defines a measure over A1. PX is called the image
measure of P by X.

Ω Ω1X

X´1A A1

Specially, if P is a probability measure then PX is a probability measure over A1.
(See Exercise.)

Example: throwing two “fair” dice ˚
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We are given two sample spaces Ω “ tpi, jq : 1 ď i, j ď 6u and Ω1 “ t2, 3, . . . , 12u.
We assume the (uniform) probability measure P over pΩ,PpΩqq. Let us define a
mapping X : pΩ,PpΩqq Ñ pΩ1,PpΩ1qq, where Xpi, jq “ i ` j.

Question: Is X a random variable?

X´1pA1q “ tω P Ω : Xpωq P A1u P PpΩq
is satisfied, since for any ω1 P Ω1 one can find an ω P Ω such that Xpωq “ ω1.
Therefore X is a random variable. Moreover, P is a probability measure, hence the
image measure

PXpA1q ∆“ P pX´1pA1qq
is a probability measure on pΩ1,PpΩ1qq.
Example: PXpt2, 4, 5uq “P pX´1pt2, 4, 5uqq“
P ptp1, 1q, p1, 3q, p2, 2q, p3, 1q, p1, 4q, p2, 3q, p3, 2q, p4, 1quq“ 8

36 “ 2
9 .

Labeling via random variables
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In the last lecture we defined the labeling L providing a label, taken from a label
set L, for each pixel i on an image.

By applying a random variable

X : tpr, g, bq P Z3 | 0 ď r, g, b ď 255u Ñ L

we can model the probability of the labeling for a given pixel as

PXpthe given pixel has the label lq .

Probability distributions
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Note that a random variable is a (measurable) mapping from a probability space
to a measure space. It is neither a variable nor random.

Let X : pΩ,A, P q Ñ pΩ1 Ď R,A1q be a random variable. Then the image measure
PX of P by X is called probability distribution.

We use the notation ppxq for P pX “ xq, where

ppxq :“ P pX “ xq ∆“ P ptω P Ω : Xpωq “ xuq .

Joint distribution

Random variables Probability distributions Graphical models MRF Factor graph

IN2329 - Probabilistic Graphical Models in Computer Vision 2. Graphical models – 14 / 37

Suppose a probability space pΩ,A, P q. Let X : pΩ,Aq Ñ pΩ1,A1q and
Y : pΩ,Aq Ñ pΩ2,A2q be discrete random variables, where x1, x2, . . . denote the
values of X and y1, y2, . . . denote the values of Y .

We introduce the notation

pij
∆“ P pX “ xi, Y “ yjq i, j “ 1, 2, . . .

for the probability of the events

tX “ xi, Y “ yju :“ tω P Ω : Xpωq “ xi and Y pωq “ yju .

These probabilities pij form a distribution, called the joint distribution of
X and Y .

Remark that ÿ

i

ÿ

j

pij “ 1 .

Marginal distributions
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Suppose a probability space pΩ,A, P q. Let X : pΩ,Aq Ñ pΩ1,A1q and
Y : pΩ,Aq Ñ pΩ2,A2q be discrete random variables, where x1, x2, . . . denote the
values of X and y1, y2, . . . denote the values of Y .

The distributions defined by the probabilities

pi
∆“ P pX “ xiq and qj

∆“ P pY “ yjq
are called the marginal distributions of X and of Y , respectively.

Let us consider the marginal distribution of X. Then

pi “ P pX “ xiq “
ÿ

j

P pX “ xi, Y “ yjq “
ÿ

j

pij .

Similarly, the marginal distribution of Y is given by

qj “ P pY “ yjq “
ÿ

i

P pX “ xi, Y “ yjq “
ÿ

i

pij .

Example: marginal distribution ˚
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Consider the problem of binary segmentation. Let us define a pixel to be “bright”,
if all its (RGB) intensities are at least 128, otherwise the given pixel is considered
to be “dark”.

Assume we are given the following table with probabilities:
Dark Bright

Foreground 0.163 0.006 0.169
Background 0.116 0.715 0.831

0.279 0.721 1

The marginal distributions of discrete random variables corresponding to the values
of tforeground, backgroundu and tdark, brightu are shown in the last column and
last row, respectively.

The following also holds

ÿ

i

pi “
ÿ

i

P pX “ xiq “
ÿ

i

ÿ

j

P pX “ xi, Y “ yiq “
ÿ

i

ÿ

j

pij “ 1 .



Conditional distribution
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Let X and Y be discrete random variables, where x1, x2, . . . denote the values of
X and y1, y2, . . . denote the values of Y .

The conditional distribution of X given Y is defined by

P pX “ xi | Y “ yjq “ P pX “ xi, Y “ yjq
P pY “ yjq “ pijř

k pkj
“ pij

qj
.

Summary ˚

Random variables Probability distributions Graphical models MRF Factor graph
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■ A random variable X : pΩ,A, P q Ñ pΩ1 Ď R,A1, PXq is a (measurable)
mapping from a probability space to a measure space.

■ The image measure PX of P by X is called probability distribution.
■ The function FX : R Ñ R, FXpxq “ P px ă Xq is called cumulative

distribution function of X.
■ Probability distributions

◆ Joint distribution
◆ Marginal distribution
◆ Conditional distribution

Graphical models
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Probabilistic graphical models encode a joint ppx,yq or conditional ppy | xq
probability distribution such that given some observations x we are provided with a
full probability distribution over all feasible solutions.

The graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

We will use the following notations

■ V denotes a set of output variables (e.g., for pixels) and the corresponding
random variables are denoted by Yi for all i P V.

■ The output domain Y is given by the product of individual variable domains
Yi (e.g., a single label set L), that is Y “ Ś

iPV Yi.
■ The input domain X is application dependent (e.g., X is a set of images).
■ The realization Y “ y means that Yi “ yi for all i P V.
■ G “ pV, Eq is an (un)directed graph, which encodes the conditional

independence assumption.

Bayesian networks

Random variables Probability distributions Graphical models MRF Factor graph
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Assume a directed, acyclic graphical model G “ pV, Eq, where E Ă V ˆ V.
The factorization is given as

ppY “ yq “
ź

iPV
ppyi | ypaGpiqq ,

where ppyi | ypaGpiqq, assuming that ppyi | Hq ” ppyiq, is a
conditional probability distribution on the parents of node
i P V, denoted by paGpiq.

Yi

Yk

Yj

Yl

The conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

Example: ppyq “ppyl | ykq ppyk | yi, yjq ppyiq ppyjq
“ppyl | ykq ppyk | yi, yjq ppyi, yjq “ ppyl | ykq ppyi, yj , ykq
“ppyl | yi, yj , ykq ppyi, yj , ykq “ ppyi, yj , yk, ylq .

MRF

Random variables Probability distributions Graphical models MRF Factor graph

Markov random field
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An undirected graphical model G “ pV, Eq is called Markov Random Field (MRF)
if two nodes are conditionally independent whenever they are not connected. In
other words, for any node i in the graph, the local Markov property holds:

ppYi | YVztiuq “ ppYi | YNpiqq ,
where Npiq is denotes the neighbors of node i in the graph.
Alternatively, we can use the following equivalent notation:

Yi KK YVzclpiq | YNpiq ,

where clpiq “ Npiq Y tiu is the closed neighborhood of i.

Yi Yj

Yk Yl

Example: Yi KK Yl | Yj , Yk ñ ppyi | yj , yk, ylq “ ppyi | yj , ykq , or
ppyl | yi, yj , ykq “ ppyl | yj , ykq .

Gibbs distribution

Random variables Probability distributions Graphical models MRF Factor graph
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A probability distribution ppyq on an undirected graphical model G “ pV, Eq is
called Gibbs distribution if it can be factorized into potential functions

ψcpycq ą 0

defined on cliques (i.e. fully connected subgraph) that cover all nodes and edges of
G. That is,

ppyq “ 1

Z

ź

cPCG
ψcpycq ,

where CG denotes the set of all (maximal) cliques in G and

Z “
ÿ

yPY

ź

cPCG
ψcpycq .

is the normalization constant. Z is also known as partition function.



Examples ˚
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CG1 “ ttiu, tju, tku, ti, ju, tj, kuu, hence

ppyq “ 1

Z
ψipyiqψjpyjqψkpykqψijpyi, yjqψjkpyj , ykq

Yi Yj Yk

G1

CG2 “ 2ti,j,k,luzH (i.e. all nonempty subsets of V2)

ppyq “ 1

Z

ź

cP2ti,j,k,luzH
ψcpycq

CG2 “ttiu, tju, tku, tlu,
ti, ju, ti, ku, ti, lu, tj, ku, tj, lu,
ti, j, ku, ti, j, lu, ti, k, lu, tj, k, lu,
ti, j, k, luu

Yi Yj

Yk Yl

G2

Hammersley-Clifford theorem
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Let G “ pV, Eq be an undirected graphical model. The Hammersley-Clifford
theorem tells us that the followings are equivalent:

■ G is an MRF model.
■ The joint probability distribution ppyq on G is a Gibbs-distribution.

An MRF defines a family of joint probability distributions by means of an
undirected graph G “ pV, Eq, E Ă V ˆ V (there are no self-edges), where the
graph encodes conditional independence assumptions between the random
variables corresponding to V.

Proof of the Hammersley-Clifford theorem
(backward direction) ˚

Random variables Probability distributions Graphical models MRF Factor graph
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Let clpiq “ Ni Y tiu and assume that ppyq follows Gibbs-distribution.

ppyi | yNiq “ ppyi,yNiq
ppyNiq

“
ř

Vzclpiq ppyq
ř

yi

ř
Vzclpiq ppyq “

ř
Vzclpiq

1
Z

ś
cPCG ψcpycqř

yi

ř
Vzclpiq

1
Z

ś
cPCG ψcpycq .

Let us define two sets: Ci :“ tc P CG : i P cu and
Ri :“ tc P CG : i R cu. Obviously, CG “ Ci Y Ri for all
i P V.

ppyi | yNiq “
ř

Vzclpiq
ś

cPCi ψcpycq ś
dPRi

ψdpydq
ř

yi

ř
Vzclpiq

ś
cPCi ψcpycq ś

dPRi
ψdpydq

“
ś

cPCi ψcpycq ¨ ř
Vzclpiq

ś
dPRi

ψdpydq
ř

yi

ś
cPCi ψcpycq ¨ ř

Vzclpiq
ś

dPRi
ψdpydq

“
ś

cPCi ψcpycqř
yi

ś
cPCi ψcpycq

Example:

Yi Yj

Yk Yl

Ci “ tpi, jq, pi, kqu
Ri “ tpj, lq, pk, lqu

Proof of the Hammersley-Clifford theorem
(backward direction) ˚

Random variables Probability distributions Graphical models MRF Factor graph
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ppyi | yNiq “
ś

cPCi ψcpycqř
yi

ś
cPCi ψcpycq

“
ś

cPCi ψcpycqř
yi

ś
cPCi ψcpycq ¨

ś
cPRi

ψcpycqś
cPRi

ψcpycq

“
ś

cPCG ψcpycqř
yi

ś
cPCG ψcpycq

“ ppyq
ppyVztiuq “ ppyi,yVztiuq

ppyVztiuq
“ ppyi | yVztiuq .

Therefore the local Markov property holds for any node i P V.

Binomial theorem ˚
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Reminder: Let x, y P R and n P N, then

px` yqn “
nÿ

k“0

ˆ
n

k

˙
xpn´kqyk ,

where
`
n
k

˘ “ n!
k!pn´kq! .

We will use the following identity

0 “ p1 ´ 1qn “
nÿ

k“0

p´1qk
ˆ
n

k

˙
.

Reminder: A k-combination of a set S is a subset of k distinct elements of S. If
|S| “ n, then number of k-combinations is equal to

`
n
k

˘
.

Proof of the Clifford-Hammersley theorem
(forward direction) ˚
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We define a candidate potential function for any subset s Ď V as follows:

fspYs “ ysq “
ź

zĎs

ppyz,y
˚̄
z qp´1|s|´|z|q

where ppyz,y
˚̄
z q is a strictly positive distribution and y˚̄

z means an (arbitrary but
fixed) default realization of the variables Yz̄ for the set z̄ “ Vztzu. We will use the
following notation: qpyzq :“ ppyz,y

˚̄
z q .

Assume that the local Markov property holds for any node i P V.
First, we show that, if s is not a clique, then fspysq “ 1. For this sake, let us
assume that s is not a clique, therefore there exist a, b P s that are not connected
to each other. Hence

fspYs “ ysq “
ź

zĎs

qpyzqp´1|s|´|z|q “
ź

wĎszta,bu

ˆ
qpywq qpywYta,buq
qpywYtauq qpywYtbuq

˙p´1˚q
,

where ´1˚ meaning either 1 or -1 is not important at all.

Proof of the Clifford-Hammersley theorem
(forward direction) ˚
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We have

fspYs “ ysq “
ź

wĎszta,bu

ˆ
qpywq qpywYta,buq
qpywYtauq qpywYtbuq

˙p´1˚q
.

qpywq
qpywYtauq

∆“
ppyw, yå , yb̊ , y

˚
w̄zta,buq

ppya,yw, yb̊ , y
˚
w̄zta,buq “

ppyå | yw, yb̊ , y
˚
w̄zta,buq

ppya | yw, yb̊ , y
˚
w̄zta,buq

aKKb“
ppyå | yw, yb, y

˚
w̄zta,buq

ppya | yw, yb, y
˚
w̄zta,buq “

ppyw, yb, y
˚
w̄ztbuq

ppyw, ya, yb, y
˚
w̄zta,buq

∆“ qpywYtbuq
qpywYta,buq

.

Therefore

fspYs “ ysq “
ź

wĎszta,bu
1p´1˚q “ 1 for all s R CG .

Proof of the Clifford-Hammersley theorem
(forward direction) ˚
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We also show that
ś

sĎV fspysq “ ppyq. Consider any z Ă V and the
corresponding factor qpyzq. Let n “ |V| ´ |z|.
■ qpyzq occurs in fzpyzq as qpyzqp´10q “ qpyzq.
■ qpyzq also occurs in the functions fspysq for s Ď V, where |s| “ |z| ` 1. The

number of such factors is
`
n
1

˘
. The exponent of those factors is

´1|s|´|z| “ ´11 “ ´1.
■ qpyzq occurs in the functions fspysq for s Ď V, where |s| “ |z| ` 2. The

number of such factors is
`
n
2

˘
and their exponent is ´1|s|´|z| “ 1.

If we multiply all those factors, we get

qpyzq1 qpyzq´pn1q qpyzqpn2q . . . qpyzqp´1nqpnnq “ qpyzqpn0q´pn1q`pn2q`¨¨¨`p´1qnpnnq
“ qpyzq0 “ 1 .

So all factors cancel themselves out except of qpyq, that is
ppyq “ ś

cĎCG fcpycq.



Factor graph
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Factor graphs are undirected graphical models that make the
factorization explicit of the probability function.
A factor graph G “ pV,F , E 1q consists of

■ variable nodes V (©) and factor nodes F (�),
■ edges E 1 Ď V ˆ F between variable and factor nodes
■ N : F Ñ 2V is the scope of a factor, defined as the set of

neighboring variables, i.e. NpF q “ ti P V : pi, F q P Eu.
A family of distribution is defined that factorizes as:

ppyq “ 1

Z

ź

FPF
ψF pyNpF qq with Z “

ÿ

yPY

ź

FPF
ψF pyNpF qq .

Yi Yj

Yk Yl

MRF

Yi Yj

Yk Yl

Factor graph
Each factor F P F connects a subset of nodes, hence we write
yF “ yNpF q “ pyv1 , . . . , yv|F |q.

Examples ˚
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Yi Yj

Yk Yl

Yi Yj

Yk Yl

An exemplar MRF p1pyq “ 1
Z1
ψijklpyi, yj , yk, ylq

Yi Yj

Yk Yl

p2pyq “ 1

Z2
ψijpyi, yjq ¨ ψikpyi, ykq ¨ ψilpyi, ylq
¨ ψjkpyj , ykq ¨ ψjlpyj , ylq ¨ ψklpyk, ylq

Factor graphs are universal, explicit about the factorization, hence it is easier to
work with them.

Summary ˚
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■ A graphical models allow us to encode relationships between a set of random
variables using a concise language, by means of a graph.

■ A Bayesian network is a directed acyclic graphical model G “ pV, Eq, where
conditional independence assumption is encoded by G that is a variable is
conditionally independent of its non-descendants given its parents.

■ An MRF defines a family of joint probability distributions by means of an
undirected graph G “ pV, Eq, where the graph encodes conditional
independence assumptions between the random variables.

■ Factor graphs are universal, explicit about the factorization, hence it is easier
to work with them.

In the next lecture we will learn about
■ Conditional random field (CRF)
■ Inference for graphical models
■ Binary image segmentation
■ EM algorithm Source: Berkeley Segmentation Dataset

Literature ˚
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