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Image Labeling

Source: Berkeley Segmentation Dataset

I : V Ă Z2 Ñ r0, 255s3ˆ|V| L : V Ñ L|V|

We may consider P pLq, by defining random variables Li “ Yi : r0, 255s3 Ñ L for
all i P V and modeling the joint distribution ppyq.

MRF model Factorization

ppyq “ 1

Z

ź

cPC
ψcpycq

We want to find the best labeling: y˚ P argmaxy ppyq.

Recap: Factor graphs ˚
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Let us consider the following MRF model:

Yj

Yi

Yk

The factorization is given as

ppyq “ψijkpyi, yj , ykq
“ψ1

ipyiq ¨ ψ1
jpyjq ¨ ψ1

kpykq ¨ ψ1
ijpyi, yjq ¨ ψ1

ikpyi, ykq
¨ ψ1

jkpyj, ykq ¨ ψ1
ijkpyi, yj , ykq .

Assume a factorization having with pairwise terms only:

ppyq “ψipyiq ¨ ψjpyjq ¨ ψkpykq ¨ ψijpyi, yjq ¨ ψikpyi, ykq ¨ ψjkpyj , ykq ¨ ψijkpyi, yj , ykq
“1 ¨ 1 ¨ 1 ¨ 1 ¨ ψijpyi, yjq ¨ ψikpyi, ykq ¨ ψjkpyj , ykq ¨ 1
“ψApyi, yjq ¨ ψBpyi, ykq ¨ ψCpyj , ykq .

This is explicitly shown by the factor graph

Yj

Yi

Yk

Agenda for today’s lecture ˚
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Today we are going to learn about

1. Graphical models

■ Conditional random fields (CRF)
■ Inference for graphical models

2. Formulation of binary image segmentation
3. Probability theory

■ Continuous random variables, probability density functions (PDF)
■ Expectation

4. Expectation-maximization algorithm

CRF

CRF Inference Binary image segmentation PDF Expectation EM algorithm

Conditional random field
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We have discussed the joint distribution

ppyq “ 1

Z

ź

FPF
ψF pyNpF qq ,

but we often have access to measurements X “ x, hence the conditional
distribution ppY “ y | X “ xq could be directly modeled, too.

This can be expressed compactly using conditional random fields (CRF) with the
factorization

ppy | xq “ppy,xq
ppxq “ ppy,xqř

y1PY ppy1,xq “
1
Z

ś
FPF ψF pyNpF q;xNpF qqř

y1PY
1
Z

ś
FPF ψF py1

NpF q;xNpF qq
“ 1

Zpxq
ź

FPF
ψF pyNpF q;xNpF qq .

Conditional random field
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ppy | xq “ 1

Zpxq
ź

FPF
ψF pyF ;xF q

with the partition function depending on x

Zpxq “
ÿ

yPY

ź

FPF
ψF pyF ;xF q .

Xi

Yi Yj

Xj

Shaded variables: The
observations X “ x.

Note that the potentials become also functions of (part of) x, i.e. ψF pyF ;xF q
instead of just ψF pyF q. Nevertheless, X is not part of the probability model, i.e. it
is not treated as random vector.



Potentials and energy functions
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We typically would like to infer marginal probabilities ppYF “ yF | xq for some
factors F P F .

Assuming ψF : YF Ñ R`, where YF “ ˆiPNpF qYi is the product domain of the
variables adjacent to F , instead of potentials, we can also work with energies.

We define an energy function EF : YF Ñ R for each factor F P F :

EF pyF ;xF q “ ´ logpψF pyF ;xF qq ô ψF pyF ;xF q “ expp´EF pyF ;xF qq .

ppy | xq “ 1

Zpxq
ź

FPF
ψF pyF ;xF q “ 1

Zpxq expp´
ÿ

FPF
EF pyF ;xF qq

“ 1

Zpxq expp´Epy;xqq .

Hence, ppy | xq is completely determined by Epy;xq.

Inference

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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The goal is to make predictions y P Y , as good as possible, about unobserved
properties for a given data instance x P X .

Suppose we are given a graphical model (e.g., a factor graph). The inference
means the procedure to estimate the probability distribution, encoded by the
graphical model, for a given data (or observation).

Probabilistic inference: Given a graphical model and the observation x, find the
value of the log partition function and the marginal distributions for each factor,

logZpxq “ log
ÿ

yPY
expp´Epy;xqq ,

µF pyF q “ ppYF “ yF | xq @F P F , @yF P YF .

This typically includes variable marginals, i.e. µi “ ppyi | xq, to make a single
prediction yi for all variables i P V.

MAP inference
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Maximum A Posteriori (MAP) inference: Given a graphical model and the
observation x, find the state y˚ P Y of maximum probability

y˚ P argmax
yPY

ppY “ y | xq .

Both inference problems are known to be NP-hard for general graphs and factors,
but they can be tractable if the underlying graphical model is suitably restricted.

Energy minimization
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Assuming a finite X , the goal is to solve y˚ P argmaxyPY ppy | xq.

argmax
yPY

ppy | xq “ argmax
yPY

1

Zpxq expp´Epy;xqq

“ argmax
yPY

expp´Epy;xqq

“ argmax
yPY

´Epy;xq

“ argmin
yPY

Epy;xq .

Energy minimization can be interpreted as solving for the most likely state of
factor graph, i.e. MAP inference.

In practice, one typically models the energy function directly.

Summary ˚
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■ A Conditional random field is an undirected graphical model, which
expresses compactly ppy | xq for some observation X “ x.

■ The inference means the procedure to estimate the probability distribution,
encoded by the graphical model, for a given data.

■ Given a graphical model and the observation x, MAP inference means to find
the state y˚ P Y of maximum probability

y˚ P argmax
yPY

ppY “ y | xq .

Binary image segmentation
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Input image Unary terms only Unary and pairwise terms

Conditional independences are specified by a factor graph G “ pV,F , E 1q, where all
pixels have influence only on the neighboring ones (i.e. E consists of 4-neighboring
connections).



Binary image segmentation
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The conditional distribution factorizes (up to pairwise factors) as

ppy | xq “ 1

Zpxq
ź

iPV
ψipyi;xiq

ź

iPV, jPNpiq
ψijpyi, yj ;xi, xjq

with
Zpxq “

ÿ

yPt0,1uV

ź

iPV
ψipyi;xiq

ź

iPV, jPNpiq
ψijpyi, yj ;xi, xjq ,

where Npiq “ tj P V : pi, j P Equ.
The corresponding energy function E : t0, 1uV ˆ X Ñ R:

Epy;xq “
ÿ

iPV
Eipyi;xiq `

ÿ

iPV, jPNpiq
Eijpyi, yj ;xi, xjq .

Unary energy terms
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In order to define energy functions for unary factors, one
can consider a set of functions φi : Yi ˆ Xi Ñ r0; 1s:

Eipyi;xiq “ ´ logφipyi;xiq for all i P V .

x

y

y “ ´ log x

Assuming that we are provided with the foreground and background distributions,
based on image intensities, pf pxq and pbpxq, respectively. Then a common way to
define the unary terms Eipyi;xiq is as follows:

Eipyi;xiq “
#

´ log pbpxiq if yi “ 0

´ log pf pxiq otherwise .

Pairwise energy terms

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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For pairwise factor energies we use the Potts model here, that is

Eijpyi, yj ;xi, xjq :“ Eijpyi, yjq “ wijJyi ‰ yjK “
#
0, if yi “ yj

wij , otherwise.

The parameters wij P R can also be set to the same value, that is wij “ w for all
pi, jq P E .

The resulting energy function given as

Epy;xq “
ÿ

iPV
Eipyi;xiq `

ÿ

iPV, jPNpiq
Eijpyi, yj ;xi, xjq

“
ÿ

iPV
´ log φipyi;xiq `

ÿ

iPV, jPNpiq
wijJyi ‰ yjK .

Continuous random variables

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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Let X : pΩ,A, P q Ñ pΩ1 Ď R,A1q be a random variable. Then FX : R Ñ R

FXpxq ∆“ P pX ă xq , x P R

is called cumulative distribution function (cdf.) of X.

Each probability measure is uniquely defined by its distribution function.

Let FX : R Ñ R be the cumulative distribution function of a random variable X.
A measurable function fXpxq is called a density function of X, if

FXpxq “
ż x

´8
fXptqdt , x P R .

A measurable function we mean to be a function with improper Riemann-integral.

A random variable X : pΩ,A, P q Ñ pR,A1q is called continuous random
variable, if it has a density function fXpxq.

The Normal (Gaussian) distribution ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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A continuous random variable X : R Ñ R
with density function

fXpxq “ 1

σ
?
2π

exp

ˆ
´px´ µq2

2σ2

˙

is said the have Normal distribution (or
Gaussian distribution with parameters
µ P R and σ P R`.

´4 ´2 0 2 4
0

0.2

0.4

0.6

0.8
µ “ 0, σ “ 1
µ “ 0, σ “ 0.5
µ “ 0, σ “ 2
µ “ ´2, σ “ 0.5

We also use the notation

N px | µ, σq △“ 1

σ
?
2π

exp

ˆ
´px ´ µq2

2σ2

˙
.

Mixture of Gaussians

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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While the Gaussian distribution has some important analytical properties, it suffers
from limitations when it comes to modelling real data sets.

However the linear combination of Gaussians can give rise to very complex
densities.

Let us consider a superposition of K
Gaussian densities

ppxq “
Kÿ

k“1

πk N px | µk, σkq ,

which is called a mixture of Gaussians.
x

p(x)

Mixture of three Gaussians

The parameters πk are called mixing coefficients.

Joint density ˚
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Suppose a probability space pΩ,A, P q. Let X : pΩ,Aq Ñ pΩ1 Ď R,A1q and
Y : pΩ,Aq Ñ pΩ2 Ď R,A2q be random variables. The joint cumulative
distribution function of X and Y , denoted by FXY : R2 Ñ R, is defined as

FXY px, yq ∆“ P pX ă x, Y ă yq , x, y P R .

If both X and Y are continuous random variables, then the joint density function
fXY : R2 Ñ R is defined by

FXY px, yq “
ż x

´8

ż y

´8
fXY pu, vqdudv .



Marginal densities ˚
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Suppose a probability space pΩ,A, P q. Let X : pΩ,Aq Ñ pΩ1,A1q and
Y : pΩ,Aq Ñ pΩ2,A2q be continuous random variables with the joint density
function fXY px, yq, then the marginal density functions fX , fY : R Ñ R are
defined as

fXpxq “
ż 8

´8
fXY px, yqdy and fY pyq “

ż 8

´8
fXY px, yqdx .

Conditional density ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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Suppose a probability space pΩ,A, P q. Let X and Y be continuous random
variables with joint density function fXY px, yq. If the marginal density function
fY pyq ‰ 0, then the conditional density function of X given Y is defined as

fX|Y px | yq “ fXY px, yq
fY pyq .

Expectation

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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The expectation of a random variable is intuitively the long-run average value of
repetitions of the experiment it represents.

Let X be a discrete random variable taking values x1, x2, . . . with probabilities
p1, p2, . . . , respectively. The expectation (or expected value) of X is defined as

ErXs “
8ÿ

i“1

xipi ,

assuming that this series is absolutely convergent (that is
ř8

i“1 |xi|pi is
convergent).

Example: throwing two “fair” dice and the value of X is is the sum the numbers
showing on the dice.

ErXs “2
1

36
` 3

2

36
` 4

3

36
` 5

4

36
` 6

5

36

` 7
6

36
` 8

5

36
` 9

4

36
` 10

3

36
` 11

2

36
` 12

1

36
“ 7 .

Expectation
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Let X be a (continuous) random variable with density function fXpxq. The
expectation of X is defined as

ErXs “
ż 8

´8
x ¨ fXpxqdx ,

assuming that this integral is absolutely convergent (that is the value of the
integral

ş8
´8 |x ¨ fXpxq|dx “ ş8

´8 |x| ¨ fXpxqdx is finite).

Conditional expectation

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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A random vector X “ pX1, . . . , Xnq is a vector whose components are random
variables. If all Xi are discrete, then X is called a discrete random vector.

Let pX,Y q be a discrete random vector. The conditional expectation of X given
the event tY “ yu is defined as

ErX | Y “ ys “
8ÿ

i“1

xiP pX “ xi | Y “ yq ,

assuming that this series is absolutely convergent.

Let pX,Y q be a (continuous) random vector with conditional density function
fX|Y px | yq. The conditional expectation of X given the event tY “ yu is
defined as

ErX | Y “ ys “
ż 8

´8
x ¨ fX|Y px | Y “ yqdx ,

assuming that this integral is absolutely convergent.

Expected value of a function

CRF Inference Binary image segmentation PDF Expectation EM algorithm

IN2329 - Probabilistic Graphical Models in Computer Vision 3. Conditional random field & Expectation-maximization algorithm – 31 / 46

Suppose a (discrete) random variable X taking values x1, x2, . . . with probabilities
p1, p2, . . . , respectively. The expected value of a function gpxq : R Ñ R is
defined as

ErgpXqs “
8ÿ

i“1

gpxiq ¨ pi ,

assuming that this series is absolutely convergent.

Suppose a (discrete) random vector pX,Y q with joint probabilities pij . The
conditional expectation of a function gpxq : R Ñ R given the event tY “ yju is
defined as

ErgpXq | Y “ ys “
8ÿ

i“1

gpxiq ¨ P pX “ xi | Y “ yjq “
8ÿ

i“1

gpxiq ¨ pij
qj

,

assuming that this series is absolutely convergent.

The Expectation-maximization
algorithm

CRF Inference Binary image segmentation PDF Expectation EM algorithm



Latent variables
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Suppose we are given a set of i.i.d. (i.e. independent and identically distributed)
data samples tx1, . . . ,xNu represented by a matrix X P RDˆN . The samples are
drawn from a model distribution (e.g., mixture of Gaussians) given by its
parameters θ.

Basically, there are mainly two applications of the EM algorithm:

1. The data has missing values due to limitations of the observation.
2. The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix Z.

We generally want to maximize the posterior probability

θ˚ P argmax
θ

ppθ | Xq “ argmax
θ

ÿ

Z

ppθ,Z | Xq .

Alternatively, one can maximize the log-likelihood

Lpθ;Xq “ ln ppX | θq “ ln
ÿ

Z

ppX,Z | θq .

Jensen’s inequality ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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Reminder: A function f : Rn Ñ R is convex, if @x1, x2 P Rn, @t P r0, 1s
fptx1 ` p1 ´ tqx2q ď tfpx1q ` p1 ´ tqfpx2q

holds. A function f is said to be concave if ´f is convex.

Assume a random vector X and a convex function ϕ, then

ϕ pErXsq ď E rϕpXqs .

x

ϕpxq

x1 x2

ϕpx2q

ϕpx1q

Erxs

ϕpErxsq

Erϕpxqs

Proof of Jensen’s inequality ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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For a discrete random variable X taking values x1, x2, . . . with probabilities
p1, p2, . . . , one can obtain

ϕpErXsq “ϕ
˜ 8ÿ

i“1

xipi

¸
∆“ l

˜ 8ÿ

i“1

xipi

¸
“ a

˜ 8ÿ

i“1

xipi

¸
` b ,

where l : R Ð R, lpxq “ ax` b is an affine function corresponding to the tangent
line of ϕ at ErXs.

“
8ÿ

i“1

pipaxi ` bq ´
8ÿ

i“1

pib` b “
8ÿ

i“1

pipaxi ` bq “
8ÿ

i“1

pilpxiq

ď
8ÿ

i“1

piϕpxiq “ ErϕpXqs .

The overview of the EM algorithm

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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The idea: start with a guess θptq for the parameters, calculate an easily computed
lower bound Bpθ; θptqq that touches the function ln ppX | θq, and maximize that
bound instead. This procedure generally converges to a local maximizer θ̂.

Source: C. Bishop: PRML, 2006.

Lower bound maximization ˚
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First we derive the lower bound Bpθ; θptqq.

ln ppX | θq “ ln
ÿ

Z

ppX,Z | θq “ ln
ÿ

Z

qptqpZq ppX,Z | θq
qptqpZqlooooomooooon
gpZq

where qptqpZq is an arbitrary probability distribution of the latent variables Z.

“ lnE
„
ppX,Z | θq
qptqpZq



looooooomooooooon
gpZq

ě E
„
ln
ppX,Z | θq

qptqZ



“
ÿ

Z

qptqpZq ln ppX,Z | θq
qptqpZq

∆“ Bpθ; θptqq .

Lagrange multiplier ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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Suppose two functions f, g : RD Ñ R having continuous first partial derivatives.
We consider the following optimization problem

max fpxq
subject to gpxq “ 0 .

It is convenient to study the Lagrangian function, defined as

Lpx, λq ∆“ fpxq ` λgpxq ,
where λ ‰ 0 is called a Lagrange multiplier.

Geometric interpretation of a Lagrange
multiplier ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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The constraint gpxq “ 0 forms a D ´ 1 dimensional surface
in RD. Suppose x and a nearby point x ` ε lying on the
surface gpxq “ 0. Based on the Taylor expansion of g
around x we get

gpx ` εq « gpxq ` εT∇gpxq ñ εT∇gpxq « 0 .

∇f(x)

∇g(x)

xA

g(x) = 0

Source: C. Bishop: PRML, 2006.

In the limit }ε} “ ?
εTε Ñ 0, we have εT∇gpxq “ 0, which means that ∇gpxq is

normal to the constraint surface, since ε is parallel to the surface.

At an optimal xA lying on the constraint surface, ∇fpxAq must be orthogonal
to the surface, otherwise we could increase the value of f by moving along the
constraint surface. Therefore, there exist a Lagrange multiplier λ such that

∇f ` λ∇g “ 0

which can be equivalently written as ∇xL “ 0. Note that B
BλL “ 0 leads to the

constraint gpxq “ 0.

Finding an optimal bound ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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We want to find the best lower bound, defined as the bound Bpθ; θptqq that
touches the objective function ln ppX | θq at θptq.

The optimal bound at the current guess θptq can be found by maximizing

Bpθptq; θptqq “
ÿ

Z

qptqpZq ln ppX,Z | θptqq
qptqpZq

with respect to the distribution qptqpZq.
Introducing a Lagrange multiplier λ to enforce

ř
Z q

ptqpZq “ 1, the objective
becomes

hpqptqq “
ÿ

Z

qptqpZq ln ppX,Z | θptqq ´
ÿ

Z

qptqpZq ln qptqpZq ` λ

˜ÿ

Z

qptqpZq ´ 1

¸
.



Finding an optimal bound ˚
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hpqptqq “
ÿ

Z

qptqpZq ln ppX,Z | θptqq ´
ÿ

Z

qptqpZq ln qptqpZq ` λ

˜ÿ

Z

qptqpZq ´ 1

¸
.

Setting the derivative of h w.r.t. qptqpZq to 0, we obtain
B

BqptqpZqh “ ln ppX,Z | θptqq ´ ln qptqpZq ´ 1 ´ λ “ 0 .

ppX,Z | θptqq expp´1 ´ λq “qptqpZq (1)

expp´1 ´ λq
ÿ

Z

ppX,Z | θptqq “
ÿ

Z

qptqpZq “ 1

expp´1 ´ λq “ 1ř
Z ppX,Z | θptqq “ 1

ppX | θptqq .

Therefore, substituting back into Eq. (1), we get

qptqpZq “ ppX,Z | θptqq
ppX | θptqq “ ppZ | X, θptqq . (2)

Finding an optimal bound ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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The resulting optimal bound at θptq indeed touches the objective function:

Bpθptq; θptqq “
ÿ

Z

qptqpZq ln ppX,Z | θptqq
qptqpZq

By substituting Eq. (2), we get

“
ÿ

Z

ppZ | X, θptqq ln ppX,Z | θptqq
ppZ | X, θptqqlooooooomooooooon

ppX|θptqq
“ ln ppX | θptqq

ÿ

Z

ppZ | X, θptqq
looooooooomooooooooon

“1

“ ln ppX | θptqq .

Maximizing the bound ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm
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We want to maximize Bpθ; θptqq with respect to θ.

Bpθ; θptqq “
ÿ

Z

qptqpZq ln ppX,Z | θq
qptqpZq

“
ÿ

Z

qptqpZq ln ppX,Z | θq ´
ÿ

Z

qptqpZq ln qptqpZq .

We need to consider the first term only

ÿ

Z

qptqpZq ln ppX,Z | θq “
ÿ

Z

ppZ | X, θptqq ln ppX,Z | θq

“Erln ppX,Z | θq | X, θptqs ∆“ Qpθ, θptqq .

θpt`1q P argmax
θ

Bpθ; θptqq “ argmax
θ

Qpθ, θptqq .

The EM algorithm
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1: Choose an initial setting for the parameters θp0q
2: t Ñ 0
3: repeat
4: t Ñ t` 1
5: E step. Evaluate qpt´1qpZq ∆“ ppZ | X, θpt´1qq
6: M step. Evaluate θptq given by

θptq “ argmax
θ

Qpθ, θpt´1qq ,

where Qpθ, θpt´1qq ∆“Erln ppX,Z | θq | X, θpt´1qs
“

ÿ

Z

ppZ | X, θpt´1qq ln ppX,Z | θq

7: until convergence of either the parameters θ or the
log likelihood Lpθ;Xq

Source: C. Bishop: PRML, 2006.

Summary ˚
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■ The Expectation-maximization algorithm is an iterative method for
parameter estimation of maximum likelihood, where the model also depends on
latent variables.

■ We are still focusing on the solution of the problem binary image
segmentation. To this end we want to minimize the energy function
E : t0, 1uV ˆ X Ñ R:

Epy;xq “
ÿ

iPV
´ log φipyi;xiq `

ÿ

iPV, jPNpiq
wijJyi ‰ yjK ,

where φipyi;xiq can be obtained by applying the EM algorithm.

In the next lecture we will learn about

■ The EM algorithm for Mixtures of Gaussians
■ Energy minimization for binary image segmentation via graph cut

Literature ˚

CRF Inference Binary image segmentation PDF Expectation EM algorithm

IN2329 - Probabilistic Graphical Models in Computer Vision 3. Conditional random field & Expectation-maximization algorithm – 46 / 46

Conditional random field

1. Sebastian Nowozin and Christoph H. Lampert. Structured prediction and learning in computer
vision. Foundations and Trends in Computer Graphics and Vision, 6(3–4), 2010

2. Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009

The Expectation-maximization algorithm

3. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977

4. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006
5. Frank Dellaert. The expectation maximization algorithm. Technical Report GIT-GVU-02-20,

Georgia Institute of Technology, Atlanta, GA, USA, 2002
6. Shane M. Haas. The expectation-maximization and alternating minimization algorithms.

Unpublished, 2002
7. Yihua Chen and Maya R. Gupta. EM demystified: An expectation-maximization tutorial.

Technical Report UWEETR-2010-0002, University of Washington, Seattle, WA, USA, 2009


