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Labeling Let us consider the following MRF model:

The factorization is given as

P(Y) =ik (Wis Y Yr)
Wi(y5) - i (yw) - i (vis ) - Vi (i yk)
Source: Berkeley Segmentation Dataset o o
[:V 72— [0,2553% V] L:V -V Wi ) Vg i i i) -
: . Assume a factorization having with pairwise terms only:

We may consider P(L), by defining random variables L; = Y; : [0,255]% — L for )
all i € V and modeling the joint distribution p(y). p(y) =vi(yi) - ¥ (Ws) - Yr(r) - Vi (Wi ¥5) - ik (Wi yk) - Vw5 i) - Yigie(Yis YY)

MRF model Factorization Vi (Yis ) - Vi (Yi vk) - i (g, v) - 1
1 K § Jk) .
p(y) = 7 H Ye(ye)

ceC

This is explicitly shown by the factor graph

We want to find the best labeling: y* € argmaxy, p(y).
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Agenda for today’s lecture *
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Today we are going to learn about
1. Graphical models

m  Conditional random fields (CRF)
B Inference for graphical models

Formulation of binary image segmentation
Probability theory

m  Continuous random variables, probability density functions (PDF)
B Expectation

4. Expectation-maximization algorithm
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Conditional random field Conditional random field
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We have discussed the joint distribution

1
p(y Ix) = 7 [ ] ¢rlyrxr)
FeF

p(y) = % [T vrne)

e with the partition function depending on x

but we often have access to measurements X = x, hence the conditional Z(x) = Z H Vr(yr;xp) -
distribution p(Y =y | X = x) could be directly modeled, too. yeY FeF Shaded variables: The

This can be expressed compactly using conditional random fields (CRF) with the observations X = x.

factorization . . .
Note that the potentials become also functions of (part of) x, i.e. Yp(yr;xr)

p(y,x) p(y,x) % [rer Yr(Y Ny XN ) instead of just ¢p(yr). Nevertheless, X is not part of the probability model, i.e. it
[x) == =3 = is not treated as random vector.

p(y =
i 2yeyP %) ey 7 Hper vri ey

1
= m z«l;[;‘ 7/'F(YN(F), XN(F)) .
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Potentials and energy functions
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We typically would like to infer marginal probabilities p(Yp = yr | x) for some
factors F' e F.

Assuming ¢ : Yp — RY, where Vi = Xien(F)Yi is the product domain of the
variables adjacent to F', instead of potentials, we can also work with energies.

We define an energy function Er : Yp — R for each factor F' € F:
Ep(yrixp) = —log(Wr(yrixr)) < Up(yrixr) =exp(—Er(yr;ixp)) .
Py %) =i [ welyrixe) = s exp(— O] Brlyrixr))
= FYF;XF) = —— exp(— FYF;XF
Z(X) FeF Z(X) FeF

zﬁ exp(—E(y;x)) .

Hence, p(y | x) is completely determined by E(y;x).
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Inference
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The goal is to make predictions y € ), as good as possible, about unobserved
properties for a given data instance x € X.

Suppose we are given a graphical model (e.g., a factor graph). The inference
means the procedure to estimate the probability distribution, encoded by the
graphical model, for a given data (or observation).

Probabilistic inference: Given a graphical model and the observation z, find the
value of the log partition function and the marginal distributions for each factor,

log Z(x) = log ) exp(—E(y; X)) ,
yey

wur(yr) =p(Yr=yr|x) VFeF, Vyrelp.

This typically includes variable marginals, i.e. p; = p(y; | X), to make a single
prediction y; for all variables i € V.
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Energy minimization
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Inference Binary image segmentation PDF Expectation EM algorithm

Inference

MAR: inference
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Maximum A Posteriori (MAP) inference: Given a graphical model and the
observation x, find the state y* € ) of maximum probability

y* e argmaxp(Y =y | x) .
yey

Both inference problems are known to be NP-hard for general graphs and factors,
but they can be tractable if the underlying graphical model is suitably restricted.

3. Conditional random field & Expectation-ma

_Summary *

Inference Binary image segmentation PDF Expectation EM algorithm

Assuming a finite X, the goal is to solve y* € argmaxycy, p(y | x).

1
argmax p(y | x) = argmax —— exp(—E(y;x))
yey yey Z(X)

= argmax exp(—E(y;x))
yey
= argmax —FE(y;x)
yey
= argmin E(y;x) .
yey
Energy minimization can be interpreted as solving for the most likely state of
factor graph, i.e. MAP inference.

In practice, one typically models the energy function directly.
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m A Conditional random field is an undirected graphical model, which
expresses compactly p(y | x) for some observation X = x.

B The inference means the procedure to estimate the probability distribution,
encoded by the graphical model, for a given data.

B Given a graphical model and the observation x, MAP inference means to find
the state y* € ) of maximum probability

y* e argmaxp(Y =y | x).
yey
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Binary_image segmentation
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Binary image segmentation

Input image  Unary terms only  Unary and pairwise terms

L%l
f?ff?i

Conditional independences are specified by a factor graph G = (V, F,&’), where all
pixels have influence only on the neighboring ones (i.e. £ consists of 4-neighboring
connections).




Binary_image segmentation
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Unary-energy terms
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The conditional distribution factorizes (up to pairwise factors) as

[T vy

i€V, jEN (i)

Py | %) = ﬁ [T eitusse)
i€y

with

Zx)= >, [[viwsz)

ye{0,1}V i€V
where N(i) = {jeV:(i,j€&)}.
The corresponding energy function E : {0,1}Y x X — R:

D Eiylye iz ) -

i (Y Y3 Tir T5)
[1

i€V, jeEN (i)

E(y;x) = Y Ei(yii i) +

9% i€V, jeN (i)

Pairwise energy terms
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In order to define energy functions for unary factors, one y
can consider a set of functions ¢; : J; x X; — [0;1]:

Ei(ys; xi) = —log ¢i(ys; ;) forallie V. y=—logz

xT

Assuming that we are provided with the foreground and background distributions,
based on image intensities, py(x) and py(x), respectively. Then a common way to
define the unary terms E;(y;; x;) is as follows:

Ei(yi i) — —log py(x;)
e —logpy(xi)

ify; =0
otherwise .
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For pairwise factor energies we use the Potts model here, that is

0, ifyi=y;

Eij(yi, yj; zi, x5) = Eij(yi,y5) = wiz[yi # y5] = .
wjj, otherwise.

The parameters w;; € R can also be set to the same value, that is w;; = w for all
(i,5) € E.
The resulting energy function given as

E(y;x) = ZEi(yi;xi) + Z

Eij(yi, yj3 wis )

€V i€V, jEN (i)
=D —loggilyssz) + ), wilyi #yl -
€V i€V, jEN (i)

%

Continuous:random variable
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Let X : (2, A, P) — (@ = R, A’) be a random variable. Then Fx : R — R
Fx(z) 2 P(X <z), zeR

is called cumulative distribution function (cdf.) of X.
Each probability measure is uniquely defined by its distribution function.

Let F'x : R — R be the cumulative distribution function of a random variable X .
A measurable function fx(z) is called a density function of X, if

Fy(a) = L Fx(t)dt, weR.

A measurable function we mean to be a function with improper Riemann-integral.

A random variable X : (Q, 4, P) — (R, A’) is called continuous random
variable, if it has a density function fx(z).
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Mixturerof Gaussians
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While the Gaussian distribution has some important analytical properties, it suffers
from limitations when it comes to modelling real data sets.

However the linear combination of Gaussians can give rise to very complex
densities.

Let us consider a superposition of K

Gaussian densities p(z)

K
p@) = Y, m N | e, 0%)

k=1

which is called a mixture of Gaussians.

Mixture of three Gaussians
The parameters 7, are called mixing coefficients.
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Continuous random variables

The Normal (Gaussian) distribution
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A continuous random variable X : R — R

0.8
with density function
1 (z—m?)
x) = exp | —
fx@) = e (<5 )

is said the have Normal distribution (or
Gaussian distribution with parameters
peRand o eRy.

We also use the notation
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%k

Joint density
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Suppose a probability space (€2, 4, P). Let X : (Q,4) — (¥ < R, A) and
Y :(Q,A) > (9" < R, A”) be random variables. The joint cumulative
distribution function of X and Y, denoted by Fyxy : R? > R, is defined as

FXy(x,y)éP(X<x,Y<y), I7yER'

If both X and Y are continuous random variables, then the joint density function
fxy : R? — R is defined by

Fxy(z,y) =f f fxy (u,v)dudv .
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Marginal.densities *
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Conditional density *
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Suppose a probability space (2, A, P). Let X : (Q,4) — (', A’) and

Y : (9, A) - (", A”) be continuous random variables with the joint density
function fxy(x,y), then the marginal density functions fx, fy : R > R are
defined as

15w = [ pevtear and )= [ et
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Expectation

_Expectation

Inference

Binary image segmentation PDF

Expectation EM algorithm

Suppose a probability space (€2, A, P). Let X and Y be continuous random
variables with joint density function fxy (z,y). If the marginal density function
fv(y) # 0, then the conditional density function of X given Y is defined as

fxy(ﬂﬂ ) )

Ixy(z|y) )
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_Expectation
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The expectation of a random variable is intuitively the long-run average value of
repetitions of the experiment it represents.

Let X be a discrete random variable taking values x1,x2, ..
P1,P2y -+

. with probabilities
respectively. The expectation (or expected value) of X is defined as

E[X] = Z i,

assuming that this series is absolutely convergent (that is ..~ |z;|p; is
convergent).

Example: throwing two “fair” dice and the value of X is is the sum the numbers

showing on the dice. 4
3
2—+3%+4%+5%+6%
6 5 3 2 1
82 49 10— 411 412 =T,
+736 {‘336+936+ 036+ 36Jr 36 ’

E[X]

Conditional expectation
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Let X be a (continuous) random variable with density function fx(z). The
expectation of X is defined as

E[X] = f; o fx(@)dz

assuming that this integral is absolutely convergent (that is the value of the
integral §*_ |2 - fx(2)|dz = {7 |2] - fx(2)da is finite).
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Expected value of a function
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A random vector X = (X7,...,X,,) is a vector whose components are random
variables. If all X; are discrete, then X is called a discrete random vector.

Let (X,Y) be a discrete random vector. The conditional expectation of X given
the event {Y = y} is defined as

o0
DMaP(X =x |Y =y),

i=1

E[X |Y =] =

assuming that this series is absolutely convergent.

Let (X,Y) be a (continuous) random vector with conditional density function
Ix|y(z | y). The conditional expectation of X given the event {Y =y} is
defined as

EIX|Y =)= [ o far(e|Y =iz,

assuming that this integral is absolutely convergent.
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Suppose a (discrete) random variable X taking values z1,z2, ... with probabilities
P1,D2, - - ., respectively. The expected value of a function g(z) : R — R is

defined as
o0
= gzi) pi s
i=1

assuming that this series is absolutely convergent.

Suppose a (discrete) random vector (X,Y’) with joint probabilities p;;. The
conditional expectation of a function g(x) : R — R given the event {Y = y;} is
defined as

gla)- 27

1 4

) P(X =a; |Y =y;) =

Ms

E[g(X) | Y =] =Z

[

assuming that this series is absolutely convergent.

The Expectation-maximization
algorithm




Latent variables
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Jensen’s inequality *
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Suppose we are given a set of i.i.d. (i.e. independent and identically distributed)
data samples {x;,...,Xy} represented by a matrix X € RP?*N. The samples are
drawn from a model distribution (e.g., mixture of Gaussians) given by its
parameters 6.

Basically, there are mainly two applications of the EM algorithm:

1. The data has missing values due to limitations of the observation.
2. The likelihood function can be simplified by assuming missing values.

Latent variables gathering the missing values are represented by a matrix Z.
We generally want to maximize the posterior probability

0* € argmax p(0 | X) = argmapr(B, Z|X).
0 o Z

Alternatively, one can maximize the log-likelihood

L(6;X) =Inp(X | 0) =In ) p(X,Z | 6) .
Z

Proof of Jensen’s inequality &

CRF Inference Binary image segmentation PDF Expectation EM algorithm

For a discrete random variable X taking values z1, z2, ..
P1,P2, - .., one can obtain

o(E[X]) = <Z IiPi) 2 (Z Iipi) =a <Z Iipi) +0b,

where [ : R « R, I(x) = az + b is an affine function corresponding to the tangent
line of ¢ at E[X].

. with probabilities

o

s
Il
—

pi(az; + b)

0 o0
= D pib+b= pi(az; +1b)
i1 i1

pip(xi) = E[p(X)] .

= > pillas)
i=1

)
s

s
Il
—
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Lower bound maximization *
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Reminder: A function f:R™ — R is convex, if V1,29 € R", V¢ € [0, 1]

< tf(an) + (1= 1) f(22)

holds. A function f is said to be concave if —f is convex.

f(ta:l + (]. — t)xg)

Assume a random vector X and a convex function ¢, then

¢ (E[X]) <E[p(X)] -
olx)

P(1) oo

Elo(2)] X

o(x2)
#(B[])

Ty E[z] Ty @
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The overview of the EM algorithm
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The idea: start with a guess 0 for the parameters, calculate an easily computed
lower bound B(6;0®)) that touches the function Inp(X | 8), and maximize that
bound instead. This procedure generally converges to a local maximizer 6.

B(6:6)

- \
o) glt+1)
Source: C. Bishop: PRML, 2006.
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First we derive the lower bound B(6;6®)).

WX,Z | 6)
t

1“2‘1( (2) B D(Z)
—_——

9(2)

Inp(X|6) =In ) p(X,Z | 0)
z

where ¢ (Z) is an arbitrary probability distribution of the latent variables Z.

=1HE[17(X,Z | 0)] >]E[lnp(x,z | 9)}

9(Z)
_ (t) p(X,Z|0) A 0
;q (Z)In ~ @) B(6;6Y) .
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Geometric interpretation of a Lagrange
“multiplier *

Suppose two functions f, g : RP — R having continuous first partial derivatives.
We consider the following optimization problem

max f(x)
subject to g(x) =0 .

It is convenient to study the Lagrangian function, defined as

2 f(x) + Ag(x)

where X\ # 0 is called a Lagrange multiplier.

L(x,\)
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Finding an optimal bound
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The constraint g(x) = 0 forms a D — 1 dimensional surface v/
in RP. Suppose x and a nearby point x + € lying on the i

surface g(x) = 0. Based on the Taylor expansion of g
around x we get

9(x) =0

glx+e) ~g(x) +e"Vg(x) = €'Vg(x)~0

Source: C. Bishop: PRML, 2006.
In the limit |e| = VeTe — 0, we have e”Vg(x) = 0, which means that Vg(x) is
normal to the constraint surface, since ¢ is parallel to the surface.

At an optimal x4 lying on the constraint surface, V f(x4) must be orthogonal

to the surface, otherwise we could increase the value of f by moving along the

constraint surface. Therefore, there exist a Lagrange multiplier \ such that
Vi+AVg=0

= 0. Note that 3

which can be equivalently written as VL L = 0 leads to the

constraint g(x) = 0.

We want to find the best lower bound, defined as the bound B(6;0®) that
touches the objective function Inp(X | 8) at 6.

The optimal bound at the current guess 8) can be found by maximizing

- N0 @ X2

B(6Y, g(t))
7 4V (Z)

with respect to the distribution ¢(*)(Z).

Introducing a Lagrange multiplier A to enforce » ¢ (Z) = 1, the objective
becomes

q(t))_Zq(t Z)lan Z‘ot))_zqt)(z lnq(t +>\<th) )
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Finding an:optimal bound *
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Finding an:optimal bound *
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V4

h(g") =>1q"(Z)np(X, Z [ 09) = > 1¢"(Z) Ing " (Z) + A (Z q"(z) - 1) :
Z Z

Setting the derivative of h w.r.t. ¢!)(Z) to 0, we obtain

0
Y h= Y ZlngW(Z) =1 -\ =
6q<t>(Z)h Inp(X,Z|6")—Ing'"(Z)—1—-X=0.

(X, Z | G(t))exp(fl -\ =q(t)(z)
exp(—1-2) Y p(X, 2 69) =Y ¢0(z) =1
Z _ 7 X ) 1
T Yp(X.Z[00)  px[60)

Therefore, substituting back into Eq. (1), we get
()
gy = PXZIOT) o g0y
4(2) (X | 60) p(Z] X, 6%)

)

exp(—1— )

Maximizing the bound *
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We want to maximize B(8; 0®) with respect to 6.

X,Z|6)
B(6;61) =% ¢V (z 1np(’7
@:0) =3 @G
=2d"(2)np(X,210) - Y 4" (Z)Ing"(Z) .
Z Z
We need to consider the first term only

24 (@) np(X,Z[0) =) p(Z | X,6") Inp(X,Z | 0)
VA V4

=E[lnp(X.Z | 0) | X,60] £ Q(6,0?) .

01D € argmax B(0; 61)) = argmax Q(9,01)) .
] ]
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_Summary

Inference Binary image segmentation PDF Expectation EM algorithm

3. Conditional random field & Expectation-maximization algorithm - 43 / 46

The resulting optimal bound at 6" indeed touches the objective function:

p(X,Z| 6%
BO:0) = Y 40(z) 1 L2 LET) (‘Z) )
Z q

By substituting Eq. (2), we get
()
=ZP(Z | X,9<‘))lnp(X’Z | 0 - )
Z p(Z|X.6Y)
S —
»(X|6")
=Inp(X | 69) ) p(Z | X,0")
Z

The EM algorithm

Inference Binary image segmentation PDF Expectation EM algorithm

. Choose an initial setting for the parameters %)

1 t—0

: repeat

t—t+1

E step. Evaluate ¢t—1(Z) £ p(Z | X, 8¢
M step. Evaluate ) given by

Inp(X|6)

rorea

Source: C. Bishop: PRML, 2006.

S L

oM = argmax Q(6, 0(“1)) s
)
where Q(6,04"D) 2E[Inp(X,Z | 0) | X, 0]

=>p(2 | X,0")np(X,Z | 6)
Z

7. until convergence of either the parameters 6 or the
log likelihood £(60;X)
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Literature *

PDF

Inference

Binary image segmentation Expectation EM algorithm

B The Expectation-maximization algorithm is an iterative method for
parameter estimation of maximum likelihood, where the model also depends on
latent variables.

B We are still focusing on the solution of the problem binary image
segmentation. To this end we want to minimize the energy function
E:{0,1}V x X - R:

E(y;x) = Z —log ¢ (ys; v:) + Z

i€V i€V, jEN (i)

wizly: # yi]
where ¢;(y;; z;) can be obtained by applying the EM algorithm.
In the next lecture we will learn about

B The EM algorithm for Mixtures of Gaussians
B Energy minimization for binary image segmentation via graph cut
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