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In the previous lecture we learnt about the energy function corresponding to the
problem of binary image segmentation:

Epy;xq “
ÿ

iPV
´ logφipyi;xiq `

ÿ

pi,jqPE
wijJyi ‰ yjK

Today we are going to learn about

■ the definition of the unary energies Eipyi;xiq. In fact we estimate mixtures of
Gaussans ffg and fbg for the foreground and background, respectively, by
making use of the EM algorithm.

Eipyi;xiq “
#

´ log fbgpxiq if yi “ 0

´ log ffgpxiq otherwise
“

#
0 if yi “ 0

´ log
ffgpxiq
fbgpxiq otherwise .

■ Graph cuts, which will be applied to minimize the energy function.

Mixture of Gaussians

Mixture of Gaussians Graph Cut Flow network

Multivariate Gaussian distribution

Mixture of Gaussians Graph Cut Flow network
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Assume a D-dimensional random vector X “ pX1, . . . , XDq, i.e. a vector whose
components are random variables, with the joint density function

ppx1, . . . , xDq “ 1a|2πΣ| exp
ˆ

´1

2
px ´ µqTΣ´1px ´ µq

˙
.

X is said to have multivariate Gaussian (or Normal) distribution with
parameters µ P RD and Σ P RDˆD assuming that Σ is positive definite.

µ is called the mean vector and Σ is called the covariance matrix. We often use
the notation X „ N px | µ,Σq denoting X has Normal distribution.

Reminder: A symmetric A P Rnˆn matrix is said to be positive definite, if
uTAu ą 0 for all non-zero u P Rn.

Mixture of Gaussians

Mixture of Gaussians Graph Cut Flow network
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Let us consider a superposition of K Gaussian
densities

ppxq “
Kÿ

k“1

πk N px | µk,Σkq ,

which is called a mixture of Gaussians.
The parameters πk are called mixing coefficients.

x

p(x)

Mixture of three Gaussians
Source: C. Bishop: PRML, 2006.

1 “
ż

RD

ppxqdx “
ż

RD

Kÿ

k“1

πk N px | µk,Σkqdx “
Kÿ

k“1

πk .

All the density functions are non-negative, hence πk ě 0 for 1 ď k ď K, therefore

0 ď πk ď 1 for all k “ 1, . . . ,K .

Example: Mixture of three 2D Gaussians ˚

Mixture of Gaussians Graph Cut Flow network
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Source: C. Bishop: Pattern Recognition and Machine Learning, 2006.

Parameter estimation ˚

Mixture of Gaussians Graph Cut Flow network
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We are interested in a method to find the maximum likelihood estimator of a
parameter θ of a probability distribution ppx | θq.
Reminiscent of naming conventions:

ppθ | xq “ ppx | θqppθq
ppxq 9 ppx | θq ppθq .

Posterior probability Likelihood Prior probability

We are given finite amount of measurement (i.e. observed data) x1, x2, . . . , and
also know the probability distribution ppx | θq. The maximum likelihood estimate
of θ is given by

θ̂ P argmax
θ

ppx | θq .

A possible solution: Expectation–maximization algorithm, which iteratively makes
guesses about the data x, and iteratively maximizes ppx | θq over θ.



Latent variables
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We introduce a K-dimensional binary random variable z P BK having a 1-of-K
representation, i.e. zk “ 1 and all other elements are equal to 0. Let us define the
marginal distribution

ppzk “ 1q “ πk ,

which is considered as the prior probability of picking the kth component of a
mixture of Gaussians. This distribution can be also written as a joint distribution

ppzq “
Kź

k“1

πzk
k .

Moreover, the conditional distribution of x given a particular value for z, i.e.the
likelihood, can be written as

ppx | zk “ 1q “ N px | µk,Σkq , thus ppx | zq “
Kź

k“1

N px | µk,Σkqzk .

Responsibilities ˚

Mixture of Gaussians Graph Cut Flow network
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The distribution of mixture of Gaussian, specified by the parameter vector
θ “ pπ,µ,Σq P RK ˆ RDˆK ˆ RD ˆ D ˆ K, is given by

ppxq ∆“ ppx | θq “
ÿ

z

ppx, z | θq “
ÿ

z

ppz | θqppx | z, θq

“
ÿ

z

Kź

k“1

`
πk ppx | µk,Σkq˘zk “

Kÿ

k“1

πk N px | µk,Σkq .

The posterior probabilities ppzk “ 1 | xq, denoted by γkpxq, a.k.a. responsibilities,
show the probability that a given sample x belongs to the kth component.

γkpxq ∆“ ppzk “ 1 | xq “ ppx | zk “ 1qppzk “ 1q
ppxq “ ppx | zk “ 1qppzk “ 1qřK

l“1 ppzl,xq
“ ppzk “ 1qppx | zk “ 1qřK

l“1 ppzl “ 1qppx | zl “ 1q “ πk N px | µk,ΣkqřK
l“1 πl N px | µl,Σlq

.

Example: Mixture of three 2D Gaussians ˚

Mixture of Gaussians Graph Cut Flow network
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Source: C. Bishop: Pattern Recognition and Machine Learning, 2006.

Estimation of a mixture of Gaussians

Mixture of Gaussians Graph Cut Flow network
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Suppose we have a set of i.i.d. data samples tx1, . . . ,xNu drawn from a mixture
of Gaussians. The data set is represented by X P RNˆD.

The goal is to find the parameter vector θ “ pπ,µ,Σq, specifying the model from
which the samples xn have most likely been drawn. We may find the parameters
which maximize the likelihood function ppx, z | θq. To simplify the optimization we
use the log-likelihood function Lpθq
θ˚ P argmax

θ
Lpθq “ argmax

θ
ln ppX,Z | θq i.i.d.“ argmax

θ
ln

Nź

n“1

ppxn, zn | θq

“ argmax
θ

ln
Nź

n“1

ppxn | zn, θqppzn | θq “ argmax
θ

ln
Nź

n“1

Kź

k“1

`
πk N pxn | µk,Σkq˘znk

“ argmax
θ

Nÿ

n“1

Kÿ

k“1

znk
`
lnπk ` lnN pxn | µk,Σkq˘

.

Note that there is no closed-form solution for this model ñ iterative solution.

Recall the EM algorithm ˚

Mixture of Gaussians Graph Cut Flow network
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1: Choose an initial setting for the parameters θp0q
2: t Ñ 0
3: repeat
4: t Ñ t ` 1
5: E step. Evaluate qpt´1qpZq ∆“ ppZ | X, θpt´1qq
6: M step. Evaluate θptq given by

θptq “ argmax
θ

Qpθ, θpt´1qq ,

where Qpθ, θpt´1qq ∆“Erln ppX,Z | θq | X, θpt´1qs
“

ÿ

Z

ppZ | X, θpt´1qq ln ppX,Z | θq

7: until convergence of either the parameters θ or the
log likelihood Lpθ;Xq

Source: C. Bishop: PRML, 2006.

E step ˚

Mixture of Gaussians Graph Cut Flow network
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We need to calculate ppZ | X, θoldq, which is calculated based on ppzn | xn, θ
oldq

for all n “ 1, . . . , N as follows (see Exercise)

ppzn | xn, θ
oldq “ ppxn | zn, θoldq ppzn | θoldq

ppxn | θoldq
“ πk N pxn | µk,ΣkqřK

l“1 πlN pxn | µk,Σkq
∆“ γkpxnq .

Therefore, in the E step we need to calculate the responsibilities γkpxnq for all
data points xn and components k “ 1, . . . ,K.

M step for µ ˚

Mixture of Gaussians Graph Cut Flow network
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We have already known that znk “ γkpxnq. Therefore, we may consider

θ˚ P argmax
θ

Nÿ

n“1

Kÿ

k“1

γkpxnq`
lnπk ` lnN pxn | µk,Σkq˘

s.t. πk ą 0 ,
Kÿ

k“1

πk “ 1 .

Setting the derivative of Lpθq w.r.t. µk to 0, one can obtain that (see Exercise)

řN
n“1 γkpxnq xnřN
m“1 γkpxmq “ µk .

M step for Σ ˚

Mixture of Gaussians Graph Cut Flow network
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θ˚ P argmax
θ

Nÿ

n“1

Kÿ

k“1

γkpxnq`
lnπk ` lnN pxn | µk,Σkq˘

s.t. πk ą 0 ,
Kÿ

k“1

πk “ 1 .

Setting the derivative of Lpθq w.r.t. Σk to 0, one can obtain (see Exercise)

Σk “
řN

n“1 γkpxnqpxn ´ µkqpxn ´ µkqT
řN

m“1 γkpxmq .

Remark: A Σ P RDˆD matrix, calculated as

Σ “ 1

N ´ 1

Nÿ

n“1

pxn ´ µqpxn ´ µqT ,

is called sample covariance matrix of data points txn P RDuNn“1, where µ P RD

is the sample mean.



M step for π ˚

Mixture of Gaussians Graph Cut Flow network
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To integrate the conditions on π we use the Lagrange multiplier method

θ˚ P argmax
θ

Nÿ

n“1

Kÿ

k“1

γkpxnq`
lnπk ` lnN pxn | µk,Σkq˘ ` λp1 ´

Kÿ

k“1

πkq .

Setting the derivative w.r.t. πk to 0, we obtain

Nÿ

n“1

γkpxnq
πk

´ λ “0

Nÿ

n“1

Kÿ

k“1

γkpxnq “λ
Kÿ

k“1

πk ñ N “ λ

therefore

πk “
řN

n“1 γkpxnq
N

.

The EM Algorithm for mixtures of Gaussians

Mixture of Gaussians Graph Cut Flow network
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1: Initialize the means µk, covariances Σk and mixing coefficients πk for all
k “ 1, . . . ,K

2: repeat
3: E step. Evaluate the responsibilities using the current parameter values

γkpxnq “ πk N pxn | µk,ΣkqřK
l“1 πl N pxn | µl,Σlq

for 1 ď n ď N and 1 ď k ď K .

4: M step. Re-estimate the parameters pπk,µk,Σkq for all k “ 1, . . . ,K

µnew
k “

řN
n“1 γkpxnqxnřN
m“1 γkpxmq , Σnew

k “
řN

n“1 γkpxnqpxn ´ µnew
k qpxn ´ µnew

k qT
řN

m“1 γkpxmq

πnew
k “

řN
n“1 γkpxnq

N

5: until convergence of either the parameters θ or the log likelihood Lpθq

Example ˚

Mixture of Gaussians Graph Cut Flow network

IN2329 - Probabilistic Graphical Models in Computer Vision 4. Mixture of Gaussians & Graph cut – 19 / 41

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

Remarks
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■ The EM algorithm is not limited to mixture of Gaussians, but it can also be
applied to other probability distributions.

■ The algorithm does not necessary yield global maxima. In practice, it is
restarted with different initializations and after convergence the result with the
highest log-likelihood is chosen.

■ One can think the EM algorithm as an alternating minimization procedure.
Considering fpθ, qq as the objective function, one iteration of the EM
algorithm can be reformulated as

E-step: qpt`1q P argmax
q

fpθptq, qq

M-step: θpt`1q P argmax
θ

fpθ, qptqq

Graph Cut

Mixture of Gaussians Graph Cut Flow network

Graph cut

Mixture of Gaussians Graph Cut Flow network
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Assume a weighted directed graph G “ pV, E , cq
■ V “ t1, . . . , nu is a finite set of nodes,
■ E Ď tpi, jq P V ˆ V | i ‰ ju is the set of edges,
■ c : V ˆ V Ñ R is a weight function. (For any pi, jq R E , cpi, jq “ 0.)

A cut pS, T q of G is a disjoint partition of V into S and T “ VzS.
The capacity of the cut pS, T q is defined as

cutpS, T q “
ÿ

pi,jqPSˆT
cpi, jq .

Assume distinct nodes s, t P V, a cut pS, T q is
called s ´ t cut if s P S and t P T .
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The minimum s ´ t cut problem is to find an s ´ t cut with the lowest cost.

Example: cutpS, T q “ cpv1, v3q ` cpv2, v4q “ 12 ` 14 “ 26.

Flow network

Mixture of Gaussians Graph Cut Flow network

Flow network and flow

Mixture of Gaussians Graph Cut Flow network
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Let G “ pV, E , cq be a directed weighted graph with non-negative edge weights.
Given two distinct nodes, a source s and a sink t, we call pV, E , c, s, tq a flow
network.

Let pV, E , c, s, tq be a flow network. A function f : V ˆ V Ñ R is called a flow if it
satisfies the following properties:

1. Capacity constraint:

fpi, jq ď cpi, jq for all i, j P V .

2. Skew-symmetry:

fpi, jq “ ´fpj, iq for all i, j P V .

3. Flow conservation:
ÿ

jPV
fpi, jq “ 0 for all i P Vzts, tu .
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The edges are labeled by
fpi, jq{cpi, jq.

Only positive fpi, jq are shown.



The value of a flow ˚

Mixture of Gaussians Graph Cut Flow network
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The value of a flow f is defined as

|f | ∆“
ÿ

ps,iqPE
fps, iq “ ´

ÿ

pi,tqPE
fpi, tq .

The maximum-flow problem is to find a flow f with the highest cost for a given
flow network G.
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The edges are labeled by fpi, jq{cpi, jq.
|f | “ 19.

An equivalent definition of flows ˚

Mixture of Gaussians Graph Cut Flow network
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Now we give a more intuitive definition of flows. We will see that the previous
definition is more helpful for the analysis of the maximum-flow algorithm.

Let pV, E , c, s, tq be a flow network. A function f : E Ñ R` is called a flow if it
satisfies the following two properties:

1. fpi, jq ď cpi, jq for all pi, jq P E .
2. For all i P Vzts, tu

ÿ

pi,jqPE
fpi, jq “

ÿ

pj,iqPE
fpj, iq .
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The edges are labeled by
fpi, jq{cpi, jq.

One can see that the two definitions of the flow are equivalent. (See Exercise)

Working with flows ˚

Mixture of Gaussians Graph Cut Flow network
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Let G “ pV, E , c, s, tq be a flow network and let f be a flow in G. We will use the
following notation for A,B Ď V

fpA,Bq “
ÿ

aPA

ÿ

bPB
fpa, bq .

It is easy to see that |f | “ fpV, ttuq, and fptiu,Vq “ 0 for all i P Vzts, tu due to
flow conservation.

Let G “ pV, E , c, s, tq be a flow network and let f be a flow in G. Then the
following equalities hold:

i) For all A Ď V, we have fpA,Aq “ 0.
ii) For all A,B Ď V, we have fpA,Bq “ ´fpB,Aq.
iii) For all A,B,C Ď V with A X B “ H, we have

fpA Y B,Cq “ fpA,Cq ` fpB,Cq and fpC,A Y Bq “ fpC,Aq ` fpC,Bq .
Proof. Exercise.

Residual network

Mixture of Gaussians Graph Cut Flow network
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Let G “ pV, E , c, s, tq be a flow network and let f be a flow in G. The weighted
directed graph Gf “ pV, Ef , cf q is called residual network of G induced by f ,
where

cf pi, jq “ cpi, jq ´ fpi, jq ,
Ef “ tpi, jq P V ˆ V : cf pi, jq ą 0u .
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A path p from s to t in Gf is called an augmenting path.

Max-flow–min-cut theorem

Mixture of Gaussians Graph Cut Flow network
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Let f be a flow in a flow network G “ pV, E , c, s, tq. Then the following conditions
are equivalent:

1) f is a maximal flow in G.
2) The residual graph Gf contains no augmenting paths.
3) |f | “ cutpS, T q for some s ´ t cut of G.

Proof of Max-flow–min-cut theorem
1q ñ 2q ˚

Mixture of Gaussians Graph Cut Flow network
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Suppose that f is maximum flow in G, but and there exists an augmenting path p
in the residual graph Gf .

The maximum amount by which we can increase the flow in p is the residual
capacity of p, given by

cf ppq “ mintcf pi, jq : pi, jq is on pu .

Furthermore, let us define fp : E Ñ R as follows:

fppi, jq “

$
’&
’%

cf ppq if pi, jq is on p

´cf ppq if pj, iq is on p

0 otherwise.

One can see that fp is a flow in Gf with value |fp| “ cf ppq ą 0. Therefore the
flow f ` fp has the value |f | ` |fp| ą |f |, which contradicts the optimality of f .

Proof of Max-flow–min-cut theorem
2q ñ 3q ˚

Mixture of Gaussians Graph Cut Flow network

IN2329 - Probabilistic Graphical Models in Computer Vision 4. Mixture of Gaussians & Graph cut – 31 / 41

Suppose that Gf has no augmenting path, i.e. s and t are disconnected in Gf .
Define

S :“ tv P V : there exists a path from s to v in Gfu .

Obviously, pS, T q is a cut of G, where T “ VzS.
For each pair of pi, jq P S ˆ T , we have fpi, jq “ cpi, jq, otherwise pi, jq P Ef
would be held, which would imply that j P S.
One can see that the flow across pS, T q is |f |:

fpS, T q iii)“ fpS,Vq ´ fpS,Sq i)“ fpS,Vq iii)“ fptsu,Vq ` fpSztsu,Vq
“ fptsu,Vq “ |f | .

Therefore |f | “ fpS, T q “ cutpS, T q.

Proof of Max-flow–min-cut theorem
3q ñ 1q ˚

Mixture of Gaussians Graph Cut Flow network
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Let f be a flow in G such that |f | “ cutpS, T q. In general, for any flow f in G the
following holds:

|f | “ fpS, T q “
ÿ

iPS

ÿ

jPT
fpi, jq ď

ÿ

iPS

ÿ

jPT
cpi, jq “ cutpS, T q .

Hence |f | “ cutpS, T q is maximal (equivalently cutpS, T q is minimal).



Ford-Fulkerson algorithm ˚

Mixture of Gaussians Graph Cut Flow network
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Input: A flow network G “ pV, E , c, s, tq
Output: A minumum s ´ t cut pS, T q of G
1: for all pi, jq P E do
2: fpi, jq Ð 0 and fpj, iq Ð 0
3: end for
4: while there exists a path p from s to t in the residual network Gf do
5: cf ppq Ð mintcf pi, jq : pi, jq is in pu
6: for all pi, jq in p do
7: fpi, jq Ð fpi, jq ` cf ppq
8: fpj, iq Ð ´fpi, jq
9: end for

10: end while
11: S Ð tv P V : there exists a path from s to v in Gfu and T Ð VzS
The complexity of this algorithm is Op|E | ¨ }f˚}q, where f˚ is the value of the
maximal flow.

Example: iteration 1 ˚

Mixture of Gaussians Graph Cut Flow network
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Flow Residual network
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Example: iteration 2 ˚
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Flow Residual network
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Example: iteration 3 ˚
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Example: iteration 4 ˚
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A “bad” example ˚
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Note that there exists an example, where the flow, computed by the
Ford–Fulkerson algorithm, does not even converge to the maximum flow.

More precisely, if a flow network has integer (N0) or rational (Q`
0 ) capacities, then

the Ford–Fulkerson algorithm terminates and it computes a maximum flow.

Edmonds–Karp algorithm

Mixture of Gaussians Graph Cut Flow network
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Input: A flow network G “ pV, E , c, s, tq
Output: A minumum s ´ t cut pS, T q of G
1: for all pi, jq P E do
2: fpi, jq Ð 0 and fpj, iq Ð 0
3: end for
4: while there exists a path p from s to t in the residual network Gf do
5: p Ð shorthestPath(Gf ,s,t)
6: cf ppq Ð mintcf pi, jq : pi, jq is in pu
7: for all pi, jq in p do
8: fpi, jq Ð fpi, jq ` cf ppq
9: fpj, iq Ð ´fpi, jq

10: end for
11: end while
12: S Ð tv P V : there exists a path from s to v in Gfu and T Ð VzS
The complexity of this algorithm is Op|V| ¨ |E |2q. There exist more efficient
algorithms for maximum flow calculation with complexity Op|V|2 ¨ |E |q and Op|V|3q.

Summary ˚

Mixture of Gaussians Graph Cut Flow network
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■ Max-flow–min-cut theorem tells us that the minimum cut problem can be
solved via maximum flow.
These two problems are dual to each other, moreover strong duality holds.

■ Edmonds–Karp algorithm: The Ford-Fulkerson algorithm becomes
polynomial, if the shortest path is used as augmented path.

In the next lecture we will learn about

■ Exact solution for binary image segmentation via graph cut
■ Boykov–Kolmogorov algorithm
■ Multi-label problem (e.g., stereo matching)
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